d89747804edbe6107ae3fbbb5bfa6857b1c973db
[fw/openocd] / src / flash / nor / kinetis.c
1 /***************************************************************************
2  *   Copyright (C) 2011 by Mathias Kuester                                 *
3  *   kesmtp@freenet.de                                                     *
4  *                                                                         *
5  *   Copyright (C) 2011 sleep(5) ltd                                       *
6  *   tomas@sleepfive.com                                                   *
7  *                                                                         *
8  *   Copyright (C) 2012 by Christopher D. Kilgour                          *
9  *   techie at whiterocker.com                                             *
10  *                                                                         *
11  *   Copyright (C) 2013 Nemui Trinomius                                    *
12  *   nemuisan_kawausogasuki@live.jp                                        *
13  *                                                                         *
14  *   Copyright (C) 2015 Tomas Vanek                                        *
15  *   vanekt@fbl.cz                                                         *
16  *                                                                         *
17  *   This program is free software; you can redistribute it and/or modify  *
18  *   it under the terms of the GNU General Public License as published by  *
19  *   the Free Software Foundation; either version 2 of the License, or     *
20  *   (at your option) any later version.                                   *
21  *                                                                         *
22  *   This program is distributed in the hope that it will be useful,       *
23  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
24  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
25  *   GNU General Public License for more details.                          *
26  *                                                                         *
27  *   You should have received a copy of the GNU General Public License     *
28  *   along with this program.  If not, see <http://www.gnu.org/licenses/>. *
29  ***************************************************************************/
30
31 #ifdef HAVE_CONFIG_H
32 #include "config.h"
33 #endif
34
35 #include "jtag/interface.h"
36 #include "imp.h"
37 #include <helper/binarybuffer.h>
38 #include <helper/time_support.h>
39 #include <target/target_type.h>
40 #include <target/algorithm.h>
41 #include <target/armv7m.h>
42 #include <target/cortex_m.h>
43
44 /*
45  * Implementation Notes
46  *
47  * The persistent memories in the Kinetis chip families K10 through
48  * K70 are all manipulated with the Flash Memory Module.  Some
49  * variants call this module the FTFE, others call it the FTFL.  To
50  * indicate that both are considered here, we use FTFX.
51  *
52  * Within the module, according to the chip variant, the persistent
53  * memory is divided into what Freescale terms Program Flash, FlexNVM,
54  * and FlexRAM.  All chip variants have Program Flash.  Some chip
55  * variants also have FlexNVM and FlexRAM, which always appear
56  * together.
57  *
58  * A given Kinetis chip may have 1, 2 or 4 blocks of flash.  Here we map
59  * each block to a separate bank.  Each block size varies by chip and
60  * may be determined by the read-only SIM_FCFG1 register.  The sector
61  * size within each bank/block varies by chip, and may be 1, 2 or 4k.
62  * The sector size may be different for flash and FlexNVM.
63  *
64  * The first half of the flash (1 or 2 blocks) is always Program Flash
65  * and always starts at address 0x00000000.  The "PFLSH" flag, bit 23
66  * of the read-only SIM_FCFG2 register, determines whether the second
67  * half of the flash is also Program Flash or FlexNVM+FlexRAM.  When
68  * PFLSH is set, the second from the first half.  When PFLSH is clear,
69  * the second half of flash is FlexNVM and always starts at address
70  * 0x10000000.  FlexRAM, which is also present when PFLSH is clear,
71  * always starts at address 0x14000000.
72  *
73  * The Flash Memory Module provides a register set where flash
74  * commands are loaded to perform flash operations like erase and
75  * program.  Different commands are available depending on whether
76  * Program Flash or FlexNVM/FlexRAM is being manipulated.  Although
77  * the commands used are quite consistent between flash blocks, the
78  * parameters they accept differ according to the flash sector size.
79  *
80  */
81
82 /* Addressess */
83 #define FCF_ADDRESS     0x00000400
84 #define FCF_FPROT       0x8
85 #define FCF_FSEC        0xc
86 #define FCF_FOPT        0xd
87 #define FCF_FDPROT      0xf
88 #define FCF_SIZE        0x10
89
90 #define FLEXRAM         0x14000000
91
92 #define MSCM_OCMDR0     0x40001400
93 #define FMC_PFB01CR     0x4001f004
94 #define FTFx_FSTAT      0x40020000
95 #define FTFx_FCNFG      0x40020001
96 #define FTFx_FCCOB3     0x40020004
97 #define FTFx_FPROT3     0x40020010
98 #define FTFx_FDPROT     0x40020017
99 #define SIM_BASE        0x40047000
100 #define SIM_BASE_KL28   0x40074000
101 #define SIM_COPC        0x40048100
102         /* SIM_COPC does not exist on devices with changed SIM_BASE */
103 #define WDOG_BASE       0x40052000
104 #define WDOG32_KE1X     0x40052000
105 #define WDOG32_KL28     0x40076000
106 #define SMC_PMCTRL      0x4007E001
107 #define SMC_PMSTAT      0x4007E003
108 #define SMC32_PMCTRL    0x4007E00C
109 #define SMC32_PMSTAT    0x4007E014
110 #define MCM_PLACR       0xF000300C
111
112 /* Offsets */
113 #define SIM_SOPT1_OFFSET    0x0000
114 #define SIM_SDID_OFFSET     0x1024
115 #define SIM_FCFG1_OFFSET    0x104c
116 #define SIM_FCFG2_OFFSET    0x1050
117
118 #define WDOG_STCTRLH_OFFSET      0
119 #define WDOG32_CS_OFFSET         0
120
121 /* Values */
122 #define PM_STAT_RUN             0x01
123 #define PM_STAT_VLPR            0x04
124 #define PM_CTRL_RUNM_RUN        0x00
125
126 /* Commands */
127 #define FTFx_CMD_BLOCKSTAT  0x00
128 #define FTFx_CMD_SECTSTAT   0x01
129 #define FTFx_CMD_LWORDPROG  0x06
130 #define FTFx_CMD_SECTERASE  0x09
131 #define FTFx_CMD_SECTWRITE  0x0b
132 #define FTFx_CMD_MASSERASE  0x44
133 #define FTFx_CMD_PGMPART    0x80
134 #define FTFx_CMD_SETFLEXRAM 0x81
135
136 /* The older Kinetis K series uses the following SDID layout :
137  * Bit 31-16 : 0
138  * Bit 15-12 : REVID
139  * Bit 11-7  : DIEID
140  * Bit 6-4   : FAMID
141  * Bit 3-0   : PINID
142  *
143  * The newer Kinetis series uses the following SDID layout :
144  * Bit 31-28 : FAMID
145  * Bit 27-24 : SUBFAMID
146  * Bit 23-20 : SERIESID
147  * Bit 19-16 : SRAMSIZE
148  * Bit 15-12 : REVID
149  * Bit 6-4   : Reserved (0)
150  * Bit 3-0   : PINID
151  *
152  * We assume that if bits 31-16 are 0 then it's an older
153  * K-series MCU.
154  */
155
156 #define KINETIS_SOPT1_RAMSIZE_MASK  0x0000F000
157 #define KINETIS_SOPT1_RAMSIZE_K24FN1M 0x0000B000
158
159 #define KINETIS_SDID_K_SERIES_MASK  0x0000FFFF
160
161 #define KINETIS_SDID_DIEID_MASK 0x00000F80
162
163 #define KINETIS_SDID_DIEID_K22FN128     0x00000680 /* smaller pflash with FTFA */
164 #define KINETIS_SDID_DIEID_K22FN256     0x00000A80
165 #define KINETIS_SDID_DIEID_K22FN512     0x00000E80
166 #define KINETIS_SDID_DIEID_K24FN256     0x00000700
167
168 #define KINETIS_SDID_DIEID_K24FN1M      0x00000300 /* Detect Errata 7534 */
169
170 /* We can't rely solely on the FAMID field to determine the MCU
171  * type since some FAMID values identify multiple MCUs with
172  * different flash sector sizes (K20 and K22 for instance).
173  * Therefore we combine it with the DIEID bits which may possibly
174  * break if Freescale bumps the DIEID for a particular MCU. */
175 #define KINETIS_K_SDID_TYPE_MASK 0x00000FF0
176 #define KINETIS_K_SDID_K10_M50   0x00000000
177 #define KINETIS_K_SDID_K10_M72   0x00000080
178 #define KINETIS_K_SDID_K10_M100  0x00000100
179 #define KINETIS_K_SDID_K10_M120  0x00000180
180 #define KINETIS_K_SDID_K11               0x00000220
181 #define KINETIS_K_SDID_K12               0x00000200
182 #define KINETIS_K_SDID_K20_M50   0x00000010
183 #define KINETIS_K_SDID_K20_M72   0x00000090
184 #define KINETIS_K_SDID_K20_M100  0x00000110
185 #define KINETIS_K_SDID_K20_M120  0x00000190
186 #define KINETIS_K_SDID_K21_M50   0x00000230
187 #define KINETIS_K_SDID_K21_M120  0x00000330
188 #define KINETIS_K_SDID_K22_M50   0x00000210
189 #define KINETIS_K_SDID_K22_M120  0x00000310
190 #define KINETIS_K_SDID_K30_M72   0x000000A0
191 #define KINETIS_K_SDID_K30_M100  0x00000120
192 #define KINETIS_K_SDID_K40_M72   0x000000B0
193 #define KINETIS_K_SDID_K40_M100  0x00000130
194 #define KINETIS_K_SDID_K50_M72   0x000000E0
195 #define KINETIS_K_SDID_K51_M72   0x000000F0
196 #define KINETIS_K_SDID_K53               0x00000170
197 #define KINETIS_K_SDID_K60_M100  0x00000140
198 #define KINETIS_K_SDID_K60_M150  0x000001C0
199 #define KINETIS_K_SDID_K70_M150  0x000001D0
200
201 #define KINETIS_SDID_SERIESID_MASK 0x00F00000
202 #define KINETIS_SDID_SERIESID_K   0x00000000
203 #define KINETIS_SDID_SERIESID_KL   0x00100000
204 #define KINETIS_SDID_SERIESID_KE   0x00200000
205 #define KINETIS_SDID_SERIESID_KW   0x00500000
206 #define KINETIS_SDID_SERIESID_KV   0x00600000
207
208 #define KINETIS_SDID_SUBFAMID_SHIFT 24
209 #define KINETIS_SDID_SUBFAMID_MASK  0x0F000000
210 #define KINETIS_SDID_SUBFAMID_KX0   0x00000000
211 #define KINETIS_SDID_SUBFAMID_KX1   0x01000000
212 #define KINETIS_SDID_SUBFAMID_KX2   0x02000000
213 #define KINETIS_SDID_SUBFAMID_KX3   0x03000000
214 #define KINETIS_SDID_SUBFAMID_KX4   0x04000000
215 #define KINETIS_SDID_SUBFAMID_KX5   0x05000000
216 #define KINETIS_SDID_SUBFAMID_KX6   0x06000000
217 #define KINETIS_SDID_SUBFAMID_KX7   0x07000000
218 #define KINETIS_SDID_SUBFAMID_KX8   0x08000000
219
220 #define KINETIS_SDID_FAMILYID_SHIFT 28
221 #define KINETIS_SDID_FAMILYID_MASK  0xF0000000
222 #define KINETIS_SDID_FAMILYID_K0X   0x00000000
223 #define KINETIS_SDID_FAMILYID_K1X   0x10000000
224 #define KINETIS_SDID_FAMILYID_K2X   0x20000000
225 #define KINETIS_SDID_FAMILYID_K3X   0x30000000
226 #define KINETIS_SDID_FAMILYID_K4X   0x40000000
227 #define KINETIS_SDID_FAMILYID_K5X   0x50000000
228 #define KINETIS_SDID_FAMILYID_K6X   0x60000000
229 #define KINETIS_SDID_FAMILYID_K7X   0x70000000
230 #define KINETIS_SDID_FAMILYID_K8X   0x80000000
231 #define KINETIS_SDID_FAMILYID_KL8X  0x90000000
232
233 /* The field originally named DIEID has new name/meaning on KE1x */
234 #define KINETIS_SDID_PROJECTID_MASK  KINETIS_SDID_DIEID_MASK
235 #define KINETIS_SDID_PROJECTID_KE1xF 0x00000080
236 #define KINETIS_SDID_PROJECTID_KE1xZ 0x00000100
237
238 struct kinetis_flash_bank {
239         struct kinetis_chip *k_chip;
240         bool probed;
241         unsigned bank_number;           /* bank number in particular chip */
242         struct flash_bank *bank;
243
244         uint32_t sector_size;
245         uint32_t protection_size;
246         uint32_t prog_base;             /* base address for FTFx operations */
247                                         /* usually same as bank->base for pflash, differs for FlexNVM */
248         uint32_t protection_block;      /* number of first protection block in this bank */
249
250         enum {
251                 FC_AUTO = 0,
252                 FC_PFLASH,
253                 FC_FLEX_NVM,
254                 FC_FLEX_RAM,
255         } flash_class;
256 };
257
258 #define KINETIS_MAX_BANKS 4u
259
260 struct kinetis_chip {
261         struct target *target;
262         bool probed;
263
264         uint32_t sim_sdid;
265         uint32_t sim_fcfg1;
266         uint32_t sim_fcfg2;
267         uint32_t fcfg2_maxaddr0_shifted;
268         uint32_t fcfg2_maxaddr1_shifted;
269
270         unsigned num_pflash_blocks, num_nvm_blocks;
271         unsigned pflash_sector_size, nvm_sector_size;
272         unsigned max_flash_prog_size;
273
274         uint32_t pflash_base;
275         uint32_t pflash_size;
276         uint32_t nvm_base;
277         uint32_t nvm_size;              /* whole FlexNVM */
278         uint32_t dflash_size;           /* accessible rest of FlexNVM if EEPROM backup uses part of FlexNVM */
279
280         uint32_t progr_accel_ram;
281         uint32_t sim_base;
282
283         enum {
284                 FS_PROGRAM_SECTOR = 1,
285                 FS_PROGRAM_LONGWORD = 2,
286                 FS_PROGRAM_PHRASE = 4,          /* Unsupported */
287
288                 FS_NO_CMD_BLOCKSTAT = 0x40,
289                 FS_WIDTH_256BIT = 0x80,
290                 FS_ECC = 0x100,
291         } flash_support;
292
293         enum {
294                 KINETIS_CACHE_NONE,
295                 KINETIS_CACHE_K,        /* invalidate using FMC->PFB0CR/PFB01CR */
296                 KINETIS_CACHE_L,        /* invalidate using MCM->PLACR */
297                 KINETIS_CACHE_MSCM,     /* devices like KE1xF, invalidate MSCM->OCMDR0 */
298         } cache_type;
299
300         enum {
301                 KINETIS_WDOG_NONE,
302                 KINETIS_WDOG_K,
303                 KINETIS_WDOG_COP,
304                 KINETIS_WDOG32_KE1X,
305                 KINETIS_WDOG32_KL28,
306         } watchdog_type;
307
308         enum {
309                 KINETIS_SMC,
310                 KINETIS_SMC32,
311         } sysmodectrlr_type;
312
313         char name[40];
314
315         unsigned num_banks;
316         struct kinetis_flash_bank banks[KINETIS_MAX_BANKS];
317 };
318
319 struct kinetis_type {
320         uint32_t sdid;
321         char *name;
322 };
323
324 static const struct kinetis_type kinetis_types_old[] = {
325         { KINETIS_K_SDID_K10_M50,  "MK10D%s5" },
326         { KINETIS_K_SDID_K10_M72,  "MK10D%s7" },
327         { KINETIS_K_SDID_K10_M100, "MK10D%s10" },
328         { KINETIS_K_SDID_K10_M120, "MK10F%s12" },
329         { KINETIS_K_SDID_K11,      "MK11D%s5" },
330         { KINETIS_K_SDID_K12,      "MK12D%s5" },
331
332         { KINETIS_K_SDID_K20_M50,  "MK20D%s5" },
333         { KINETIS_K_SDID_K20_M72,  "MK20D%s7" },
334         { KINETIS_K_SDID_K20_M100, "MK20D%s10" },
335         { KINETIS_K_SDID_K20_M120, "MK20F%s12" },
336         { KINETIS_K_SDID_K21_M50,  "MK21D%s5" },
337         { KINETIS_K_SDID_K21_M120, "MK21F%s12" },
338         { KINETIS_K_SDID_K22_M50,  "MK22D%s5" },
339         { KINETIS_K_SDID_K22_M120, "MK22F%s12" },
340
341         { KINETIS_K_SDID_K30_M72,  "MK30D%s7" },
342         { KINETIS_K_SDID_K30_M100, "MK30D%s10" },
343
344         { KINETIS_K_SDID_K40_M72,  "MK40D%s7" },
345         { KINETIS_K_SDID_K40_M100, "MK40D%s10" },
346
347         { KINETIS_K_SDID_K50_M72,  "MK50D%s7" },
348         { KINETIS_K_SDID_K51_M72,  "MK51D%s7" },
349         { KINETIS_K_SDID_K53,      "MK53D%s10" },
350
351         { KINETIS_K_SDID_K60_M100, "MK60D%s10" },
352         { KINETIS_K_SDID_K60_M150, "MK60F%s15" },
353
354         { KINETIS_K_SDID_K70_M150, "MK70F%s15" },
355 };
356
357
358 #define MDM_AP                  1
359
360 #define MDM_REG_STAT            0x00
361 #define MDM_REG_CTRL            0x04
362 #define MDM_REG_ID              0xfc
363
364 #define MDM_STAT_FMEACK         (1<<0)
365 #define MDM_STAT_FREADY         (1<<1)
366 #define MDM_STAT_SYSSEC         (1<<2)
367 #define MDM_STAT_SYSRES         (1<<3)
368 #define MDM_STAT_FMEEN          (1<<5)
369 #define MDM_STAT_BACKDOOREN     (1<<6)
370 #define MDM_STAT_LPEN           (1<<7)
371 #define MDM_STAT_VLPEN          (1<<8)
372 #define MDM_STAT_LLSMODEXIT     (1<<9)
373 #define MDM_STAT_VLLSXMODEXIT   (1<<10)
374 #define MDM_STAT_CORE_HALTED    (1<<16)
375 #define MDM_STAT_CORE_SLEEPDEEP (1<<17)
376 #define MDM_STAT_CORESLEEPING   (1<<18)
377
378 #define MDM_CTRL_FMEIP          (1<<0)
379 #define MDM_CTRL_DBG_DIS        (1<<1)
380 #define MDM_CTRL_DBG_REQ        (1<<2)
381 #define MDM_CTRL_SYS_RES_REQ    (1<<3)
382 #define MDM_CTRL_CORE_HOLD_RES  (1<<4)
383 #define MDM_CTRL_VLLSX_DBG_REQ  (1<<5)
384 #define MDM_CTRL_VLLSX_DBG_ACK  (1<<6)
385 #define MDM_CTRL_VLLSX_STAT_ACK (1<<7)
386
387 #define MDM_ACCESS_TIMEOUT      500 /* msec */
388
389
390 static bool allow_fcf_writes;
391 static uint8_t fcf_fopt = 0xff;
392 static bool fcf_fopt_configured;
393 static bool create_banks;
394
395
396 const struct flash_driver kinetis_flash;
397 static int kinetis_write_inner(struct flash_bank *bank, const uint8_t *buffer,
398                         uint32_t offset, uint32_t count);
399 static int kinetis_probe_chip(struct kinetis_chip *k_chip);
400 static int kinetis_auto_probe(struct flash_bank *bank);
401
402
403 static int kinetis_mdm_write_register(struct adiv5_dap *dap, unsigned reg, uint32_t value)
404 {
405         int retval;
406         LOG_DEBUG("MDM_REG[0x%02x] <- %08" PRIX32, reg, value);
407
408         retval = dap_queue_ap_write(dap_ap(dap, MDM_AP), reg, value);
409         if (retval != ERROR_OK) {
410                 LOG_DEBUG("MDM: failed to queue a write request");
411                 return retval;
412         }
413
414         retval = dap_run(dap);
415         if (retval != ERROR_OK) {
416                 LOG_DEBUG("MDM: dap_run failed");
417                 return retval;
418         }
419
420
421         return ERROR_OK;
422 }
423
424 static int kinetis_mdm_read_register(struct adiv5_dap *dap, unsigned reg, uint32_t *result)
425 {
426         int retval;
427
428         retval = dap_queue_ap_read(dap_ap(dap, MDM_AP), reg, result);
429         if (retval != ERROR_OK) {
430                 LOG_DEBUG("MDM: failed to queue a read request");
431                 return retval;
432         }
433
434         retval = dap_run(dap);
435         if (retval != ERROR_OK) {
436                 LOG_DEBUG("MDM: dap_run failed");
437                 return retval;
438         }
439
440         LOG_DEBUG("MDM_REG[0x%02x]: %08" PRIX32, reg, *result);
441         return ERROR_OK;
442 }
443
444 static int kinetis_mdm_poll_register(struct adiv5_dap *dap, unsigned reg,
445                         uint32_t mask, uint32_t value, uint32_t timeout_ms)
446 {
447         uint32_t val;
448         int retval;
449         int64_t ms_timeout = timeval_ms() + timeout_ms;
450
451         do {
452                 retval = kinetis_mdm_read_register(dap, reg, &val);
453                 if (retval != ERROR_OK || (val & mask) == value)
454                         return retval;
455
456                 alive_sleep(1);
457         } while (timeval_ms() < ms_timeout);
458
459         LOG_DEBUG("MDM: polling timed out");
460         return ERROR_FAIL;
461 }
462
463 /*
464  * This command can be used to break a watchdog reset loop when
465  * connecting to an unsecured target. Unlike other commands, halt will
466  * automatically retry as it does not know how far into the boot process
467  * it is when the command is called.
468  */
469 COMMAND_HANDLER(kinetis_mdm_halt)
470 {
471         struct target *target = get_current_target(CMD_CTX);
472         struct cortex_m_common *cortex_m = target_to_cm(target);
473         struct adiv5_dap *dap = cortex_m->armv7m.arm.dap;
474         int retval;
475         int tries = 0;
476         uint32_t stat;
477         int64_t ms_timeout = timeval_ms() + MDM_ACCESS_TIMEOUT;
478
479         if (!dap) {
480                 LOG_ERROR("Cannot perform halt with a high-level adapter");
481                 return ERROR_FAIL;
482         }
483
484         while (true) {
485                 tries++;
486
487                 kinetis_mdm_write_register(dap, MDM_REG_CTRL, MDM_CTRL_CORE_HOLD_RES);
488
489                 alive_sleep(1);
490
491                 retval = kinetis_mdm_read_register(dap, MDM_REG_STAT, &stat);
492                 if (retval != ERROR_OK) {
493                         LOG_DEBUG("MDM: failed to read MDM_REG_STAT");
494                         continue;
495                 }
496
497                 /* Repeat setting MDM_CTRL_CORE_HOLD_RES until system is out of
498                  * reset with flash ready and without security
499                  */
500                 if ((stat & (MDM_STAT_FREADY | MDM_STAT_SYSSEC | MDM_STAT_SYSRES))
501                                 == (MDM_STAT_FREADY | MDM_STAT_SYSRES))
502                         break;
503
504                 if (timeval_ms() >= ms_timeout) {
505                         LOG_ERROR("MDM: halt timed out");
506                         return ERROR_FAIL;
507                 }
508         }
509
510         LOG_DEBUG("MDM: halt succeded after %d attempts.", tries);
511
512         target_poll(target);
513         /* enable polling in case kinetis_check_flash_security_status disabled it */
514         jtag_poll_set_enabled(true);
515
516         alive_sleep(100);
517
518         target->reset_halt = true;
519         target->type->assert_reset(target);
520
521         retval = kinetis_mdm_write_register(dap, MDM_REG_CTRL, 0);
522         if (retval != ERROR_OK) {
523                 LOG_ERROR("MDM: failed to clear MDM_REG_CTRL");
524                 return retval;
525         }
526
527         target->type->deassert_reset(target);
528
529         return ERROR_OK;
530 }
531
532 COMMAND_HANDLER(kinetis_mdm_reset)
533 {
534         struct target *target = get_current_target(CMD_CTX);
535         struct cortex_m_common *cortex_m = target_to_cm(target);
536         struct adiv5_dap *dap = cortex_m->armv7m.arm.dap;
537         int retval;
538
539         if (!dap) {
540                 LOG_ERROR("Cannot perform reset with a high-level adapter");
541                 return ERROR_FAIL;
542         }
543
544         retval = kinetis_mdm_write_register(dap, MDM_REG_CTRL, MDM_CTRL_SYS_RES_REQ);
545         if (retval != ERROR_OK) {
546                 LOG_ERROR("MDM: failed to write MDM_REG_CTRL");
547                 return retval;
548         }
549
550         retval = kinetis_mdm_poll_register(dap, MDM_REG_STAT, MDM_STAT_SYSRES, 0, 500);
551         if (retval != ERROR_OK) {
552                 LOG_ERROR("MDM: failed to assert reset");
553                 return retval;
554         }
555
556         retval = kinetis_mdm_write_register(dap, MDM_REG_CTRL, 0);
557         if (retval != ERROR_OK) {
558                 LOG_ERROR("MDM: failed to clear MDM_REG_CTRL");
559                 return retval;
560         }
561
562         return ERROR_OK;
563 }
564
565 /*
566  * This function implements the procedure to mass erase the flash via
567  * SWD/JTAG on Kinetis K and L series of devices as it is described in
568  * AN4835 "Production Flash Programming Best Practices for Kinetis K-
569  * and L-series MCUs" Section 4.2.1. To prevent a watchdog reset loop,
570  * the core remains halted after this function completes as suggested
571  * by the application note.
572  */
573 COMMAND_HANDLER(kinetis_mdm_mass_erase)
574 {
575         struct target *target = get_current_target(CMD_CTX);
576         struct cortex_m_common *cortex_m = target_to_cm(target);
577         struct adiv5_dap *dap = cortex_m->armv7m.arm.dap;
578
579         if (!dap) {
580                 LOG_ERROR("Cannot perform mass erase with a high-level adapter");
581                 return ERROR_FAIL;
582         }
583
584         int retval;
585
586         /*
587          * ... Power on the processor, or if power has already been
588          * applied, assert the RESET pin to reset the processor. For
589          * devices that do not have a RESET pin, write the System
590          * Reset Request bit in the MDM-AP control register after
591          * establishing communication...
592          */
593
594         /* assert SRST if configured */
595         bool has_srst = jtag_get_reset_config() & RESET_HAS_SRST;
596         if (has_srst)
597                 adapter_assert_reset();
598
599         retval = kinetis_mdm_write_register(dap, MDM_REG_CTRL, MDM_CTRL_SYS_RES_REQ);
600         if (retval != ERROR_OK && !has_srst) {
601                 LOG_ERROR("MDM: failed to assert reset");
602                 goto deassert_reset_and_exit;
603         }
604
605         /*
606          * ... Read the MDM-AP status register repeatedly and wait for
607          * stable conditions suitable for mass erase:
608          * - mass erase is enabled
609          * - flash is ready
610          * - reset is finished
611          *
612          * Mass erase is started as soon as all conditions are met in 32
613          * subsequent status reads.
614          *
615          * In case of not stable conditions (RESET/WDOG loop in secured device)
616          * the user is asked for manual pressing of RESET button
617          * as a last resort.
618          */
619         int cnt_mass_erase_disabled = 0;
620         int cnt_ready = 0;
621         int64_t ms_start = timeval_ms();
622         bool man_reset_requested = false;
623
624         do {
625                 uint32_t stat = 0;
626                 int64_t ms_elapsed = timeval_ms() - ms_start;
627
628                 if (!man_reset_requested && ms_elapsed > 100) {
629                         LOG_INFO("MDM: Press RESET button now if possible.");
630                         man_reset_requested = true;
631                 }
632
633                 if (ms_elapsed > 3000) {
634                         LOG_ERROR("MDM: waiting for mass erase conditions timed out.");
635                         LOG_INFO("Mass erase of a secured MCU is not possible without hardware reset.");
636                         LOG_INFO("Connect SRST, use 'reset_config srst_only' and retry.");
637                         goto deassert_reset_and_exit;
638                 }
639                 retval = kinetis_mdm_read_register(dap, MDM_REG_STAT, &stat);
640                 if (retval != ERROR_OK) {
641                         cnt_ready = 0;
642                         continue;
643                 }
644
645                 if (!(stat & MDM_STAT_FMEEN)) {
646                         cnt_ready = 0;
647                         cnt_mass_erase_disabled++;
648                         if (cnt_mass_erase_disabled > 10) {
649                                 LOG_ERROR("MDM: mass erase is disabled");
650                                 goto deassert_reset_and_exit;
651                         }
652                         continue;
653                 }
654
655                 if ((stat & (MDM_STAT_FREADY | MDM_STAT_SYSRES)) == MDM_STAT_FREADY)
656                         cnt_ready++;
657                 else
658                         cnt_ready = 0;
659
660         } while (cnt_ready < 32);
661
662         /*
663          * ... Write the MDM-AP control register to set the Flash Mass
664          * Erase in Progress bit. This will start the mass erase
665          * process...
666          */
667         retval = kinetis_mdm_write_register(dap, MDM_REG_CTRL, MDM_CTRL_SYS_RES_REQ | MDM_CTRL_FMEIP);
668         if (retval != ERROR_OK) {
669                 LOG_ERROR("MDM: failed to start mass erase");
670                 goto deassert_reset_and_exit;
671         }
672
673         /*
674          * ... Read the MDM-AP control register until the Flash Mass
675          * Erase in Progress bit clears...
676          * Data sheed defines erase time <3.6 sec/512kB flash block.
677          * The biggest device has 4 pflash blocks => timeout 16 sec.
678          */
679         retval = kinetis_mdm_poll_register(dap, MDM_REG_CTRL, MDM_CTRL_FMEIP, 0, 16000);
680         if (retval != ERROR_OK) {
681                 LOG_ERROR("MDM: mass erase timeout");
682                 goto deassert_reset_and_exit;
683         }
684
685         target_poll(target);
686         /* enable polling in case kinetis_check_flash_security_status disabled it */
687         jtag_poll_set_enabled(true);
688
689         alive_sleep(100);
690
691         target->reset_halt = true;
692         target->type->assert_reset(target);
693
694         /*
695          * ... Negate the RESET signal or clear the System Reset Request
696          * bit in the MDM-AP control register.
697          */
698         retval = kinetis_mdm_write_register(dap, MDM_REG_CTRL, 0);
699         if (retval != ERROR_OK)
700                 LOG_ERROR("MDM: failed to clear MDM_REG_CTRL");
701
702         target->type->deassert_reset(target);
703
704         return retval;
705
706 deassert_reset_and_exit:
707         kinetis_mdm_write_register(dap, MDM_REG_CTRL, 0);
708         if (has_srst)
709                 adapter_deassert_reset();
710         return retval;
711 }
712
713 static const uint32_t kinetis_known_mdm_ids[] = {
714         0x001C0000,     /* Kinetis-K Series */
715         0x001C0020,     /* Kinetis-L/M/V/E Series */
716         0x001C0030,     /* Kinetis with a Cortex-M7, in time of writing KV58 */
717 };
718
719 /*
720  * This function implements the procedure to connect to
721  * SWD/JTAG on Kinetis K and L series of devices as it is described in
722  * AN4835 "Production Flash Programming Best Practices for Kinetis K-
723  * and L-series MCUs" Section 4.1.1
724  */
725 COMMAND_HANDLER(kinetis_check_flash_security_status)
726 {
727         struct target *target = get_current_target(CMD_CTX);
728         struct cortex_m_common *cortex_m = target_to_cm(target);
729         struct adiv5_dap *dap = cortex_m->armv7m.arm.dap;
730
731         if (!dap) {
732                 LOG_WARNING("Cannot check flash security status with a high-level adapter");
733                 return ERROR_OK;
734         }
735
736         if (!dap->ops)
737                 return ERROR_OK;        /* too early to check, in JTAG mode ops may not be initialised */
738
739         uint32_t val;
740         int retval;
741
742         /*
743          * ... The MDM-AP ID register can be read to verify that the
744          * connection is working correctly...
745          */
746         retval = kinetis_mdm_read_register(dap, MDM_REG_ID, &val);
747         if (retval != ERROR_OK) {
748                 LOG_ERROR("MDM: failed to read ID register");
749                 return ERROR_OK;
750         }
751
752         if (val == 0)
753                 return ERROR_OK;        /* dap not yet initialised */
754
755         bool found = false;
756         for (size_t i = 0; i < ARRAY_SIZE(kinetis_known_mdm_ids); i++) {
757                 if (val == kinetis_known_mdm_ids[i]) {
758                         found = true;
759                         break;
760                 }
761         }
762
763         if (!found)
764                 LOG_WARNING("MDM: unknown ID %08" PRIX32, val);
765
766         /*
767          * ... Read the System Security bit to determine if security is enabled.
768          * If System Security = 0, then proceed. If System Security = 1, then
769          * communication with the internals of the processor, including the
770          * flash, will not be possible without issuing a mass erase command or
771          * unsecuring the part through other means (backdoor key unlock)...
772          */
773         retval = kinetis_mdm_read_register(dap, MDM_REG_STAT, &val);
774         if (retval != ERROR_OK) {
775                 LOG_ERROR("MDM: failed to read MDM_REG_STAT");
776                 return ERROR_OK;
777         }
778
779         /*
780          * System Security bit is also active for short time during reset.
781          * If a MCU has blank flash and runs in RESET/WDOG loop,
782          * System Security bit is active most of time!
783          * We should observe Flash Ready bit and read status several times
784          * to avoid false detection of secured MCU
785          */
786         int secured_score = 0, flash_not_ready_score = 0;
787
788         if ((val & (MDM_STAT_SYSSEC | MDM_STAT_FREADY)) != MDM_STAT_FREADY) {
789                 uint32_t stats[32];
790
791                 for (unsigned int i = 0; i < 32; i++) {
792                         stats[i] = MDM_STAT_FREADY;
793                         dap_queue_ap_read(dap_ap(dap, MDM_AP), MDM_REG_STAT, &stats[i]);
794                 }
795                 retval = dap_run(dap);
796                 if (retval != ERROR_OK) {
797                         LOG_DEBUG("MDM: dap_run failed when validating secured state");
798                         return ERROR_OK;
799                 }
800                 for (unsigned int i = 0; i < 32; i++) {
801                         if (stats[i] & MDM_STAT_SYSSEC)
802                                 secured_score++;
803                         if (!(stats[i] & MDM_STAT_FREADY))
804                                 flash_not_ready_score++;
805                 }
806         }
807
808         if (flash_not_ready_score <= 8 && secured_score > 24) {
809                 jtag_poll_set_enabled(false);
810
811                 LOG_WARNING("*********** ATTENTION! ATTENTION! ATTENTION! ATTENTION! **********");
812                 LOG_WARNING("****                                                          ****");
813                 LOG_WARNING("**** Your Kinetis MCU is in secured state, which means that,  ****");
814                 LOG_WARNING("**** with exception for very basic communication, JTAG/SWD    ****");
815                 LOG_WARNING("**** interface will NOT work. In order to restore its         ****");
816                 LOG_WARNING("**** functionality please issue 'kinetis mdm mass_erase'      ****");
817                 LOG_WARNING("**** command, power cycle the MCU and restart OpenOCD.        ****");
818                 LOG_WARNING("****                                                          ****");
819                 LOG_WARNING("*********** ATTENTION! ATTENTION! ATTENTION! ATTENTION! **********");
820
821         } else if (flash_not_ready_score > 24) {
822                 jtag_poll_set_enabled(false);
823                 LOG_WARNING("**** Your Kinetis MCU is probably locked-up in RESET/WDOG loop. ****");
824                 LOG_WARNING("**** Common reason is a blank flash (at least a reset vector).  ****");
825                 LOG_WARNING("**** Issue 'kinetis mdm halt' command or if SRST is connected   ****");
826                 LOG_WARNING("**** and configured, use 'reset halt'                           ****");
827                 LOG_WARNING("**** If MCU cannot be halted, it is likely secured and running  ****");
828                 LOG_WARNING("**** in RESET/WDOG loop. Issue 'kinetis mdm mass_erase'         ****");
829
830         } else {
831                 LOG_INFO("MDM: Chip is unsecured. Continuing.");
832                 jtag_poll_set_enabled(true);
833         }
834
835         return ERROR_OK;
836 }
837
838
839 static struct kinetis_chip *kinetis_get_chip(struct target *target)
840 {
841         struct flash_bank *bank_iter;
842         struct kinetis_flash_bank *k_bank;
843
844         /* iterate over all kinetis banks */
845         for (bank_iter = flash_bank_list(); bank_iter; bank_iter = bank_iter->next) {
846                 if (bank_iter->driver != &kinetis_flash
847                     || bank_iter->target != target)
848                         continue;
849
850                 k_bank = bank_iter->driver_priv;
851                 if (!k_bank)
852                         continue;
853
854                 if (k_bank->k_chip)
855                         return k_bank->k_chip;
856         }
857         return NULL;
858 }
859
860 static int kinetis_chip_options(struct kinetis_chip *k_chip, int argc, const char *argv[])
861 {
862         for (int i = 0; i < argc; i++) {
863                 if (strcmp(argv[i], "-sim-base") == 0) {
864                         if (i + 1 < argc)
865                                 k_chip->sim_base = strtoul(argv[++i], NULL, 0);
866                 } else
867                         LOG_ERROR("Unsupported flash bank option %s", argv[i]);
868         }
869         return ERROR_OK;
870 }
871
872 FLASH_BANK_COMMAND_HANDLER(kinetis_flash_bank_command)
873 {
874         struct target *target = bank->target;
875         struct kinetis_chip *k_chip;
876         struct kinetis_flash_bank *k_bank;
877         int retval;
878
879         if (CMD_ARGC < 6)
880                 return ERROR_COMMAND_SYNTAX_ERROR;
881
882         LOG_INFO("add flash_bank kinetis %s", bank->name);
883
884         k_chip = kinetis_get_chip(target);
885
886         if (k_chip == NULL) {
887                 k_chip = calloc(sizeof(struct kinetis_chip), 1);
888                 if (k_chip == NULL) {
889                         LOG_ERROR("No memory");
890                         return ERROR_FAIL;
891                 }
892
893                 k_chip->target = target;
894
895                 /* only the first defined bank can define chip options */
896                 retval = kinetis_chip_options(k_chip, CMD_ARGC - 6, CMD_ARGV + 6);
897                 if (retval != ERROR_OK)
898                         return retval;
899         }
900
901         if (k_chip->num_banks >= KINETIS_MAX_BANKS) {
902                 LOG_ERROR("Only %u Kinetis flash banks are supported", KINETIS_MAX_BANKS);
903                 return ERROR_FAIL;
904         }
905
906         bank->driver_priv = k_bank = &(k_chip->banks[k_chip->num_banks]);
907         k_bank->k_chip = k_chip;
908         k_bank->bank_number = k_chip->num_banks;
909         k_bank->bank = bank;
910         k_chip->num_banks++;
911
912         return ERROR_OK;
913 }
914
915
916 static void kinetis_free_driver_priv(struct flash_bank *bank)
917 {
918         struct kinetis_flash_bank *k_bank = bank->driver_priv;
919         if (k_bank == NULL)
920                 return;
921
922         struct kinetis_chip *k_chip = k_bank->k_chip;
923         if (k_chip == NULL)
924                 return;
925
926         k_chip->num_banks--;
927         if (k_chip->num_banks == 0)
928                 free(k_chip);
929 }
930
931
932 static int kinetis_create_missing_banks(struct kinetis_chip *k_chip)
933 {
934         unsigned num_blocks;
935         struct kinetis_flash_bank *k_bank;
936         struct flash_bank *bank;
937         char base_name[69], name[80], num[4];
938         char *class, *p;
939
940         num_blocks = k_chip->num_pflash_blocks + k_chip->num_nvm_blocks;
941         if (num_blocks > KINETIS_MAX_BANKS) {
942                 LOG_ERROR("Only %u Kinetis flash banks are supported", KINETIS_MAX_BANKS);
943                 return ERROR_FAIL;
944         }
945
946         bank = k_chip->banks[0].bank;
947         if (bank && bank->name) {
948                 strncpy(base_name, bank->name, sizeof(base_name) - 1);
949                 base_name[sizeof(base_name) - 1] = '\0';
950                 p = strstr(base_name, ".pflash");
951                 if (p) {
952                         *p = '\0';
953                         if (k_chip->num_pflash_blocks > 1) {
954                                 /* rename first bank if numbering is needed */
955                                 snprintf(name, sizeof(name), "%s.pflash0", base_name);
956                                 free(bank->name);
957                                 bank->name = strdup(name);
958                         }
959                 }
960         } else {
961                 strncpy(base_name, target_name(k_chip->target), sizeof(base_name) - 1);
962                 base_name[sizeof(base_name) - 1] = '\0';
963                 p = strstr(base_name, ".cpu");
964                 if (p)
965                         *p = '\0';
966         }
967
968         for (unsigned int bank_idx = 1; bank_idx < num_blocks; bank_idx++) {
969                 k_bank = &(k_chip->banks[bank_idx]);
970                 bank = k_bank->bank;
971
972                 if (bank)
973                         continue;
974
975                 num[0] = '\0';
976
977                 if (bank_idx < k_chip->num_pflash_blocks) {
978                         class = "pflash";
979                         if (k_chip->num_pflash_blocks > 1)
980                                 snprintf(num, sizeof(num), "%u", bank_idx);
981                 } else {
982                         class = "flexnvm";
983                         if (k_chip->num_nvm_blocks > 1)
984                                 snprintf(num, sizeof(num), "%u",
985                                          bank_idx - k_chip->num_pflash_blocks);
986                 }
987
988                 bank = calloc(sizeof(struct flash_bank), 1);
989                 if (bank == NULL)
990                         return ERROR_FAIL;
991
992                 bank->target = k_chip->target;
993                 bank->driver = &kinetis_flash;
994                 bank->default_padded_value = bank->erased_value = 0xff;
995
996                 snprintf(name, sizeof(name), "%s.%s%s",
997                          base_name, class, num);
998                 bank->name = strdup(name);
999
1000                 bank->driver_priv = k_bank = &(k_chip->banks[k_chip->num_banks]);
1001                 k_bank->k_chip = k_chip;
1002                 k_bank->bank_number = bank_idx;
1003                 k_bank->bank = bank;
1004                 if (k_chip->num_banks <= bank_idx)
1005                         k_chip->num_banks = bank_idx + 1;
1006
1007                 flash_bank_add(bank);
1008         }
1009         return ERROR_OK;
1010 }
1011
1012
1013 static int kinetis_disable_wdog_algo(struct target *target, size_t code_size, const uint8_t *code, uint32_t wdog_base)
1014 {
1015         struct working_area *wdog_algorithm;
1016         struct armv7m_algorithm armv7m_info;
1017         struct reg_param reg_params[1];
1018         int retval;
1019
1020         if (target->state != TARGET_HALTED) {
1021                 LOG_ERROR("Target not halted");
1022                 return ERROR_TARGET_NOT_HALTED;
1023         }
1024
1025         retval = target_alloc_working_area(target, code_size, &wdog_algorithm);
1026         if (retval != ERROR_OK)
1027                 return retval;
1028
1029         retval = target_write_buffer(target, wdog_algorithm->address,
1030                         code_size, code);
1031         if (retval == ERROR_OK) {
1032                 armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
1033                 armv7m_info.core_mode = ARM_MODE_THREAD;
1034
1035                 init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT);
1036                 buf_set_u32(reg_params[0].value, 0, 32, wdog_base);
1037
1038                 retval = target_run_algorithm(target, 0, NULL, 1, reg_params,
1039                         wdog_algorithm->address,
1040                         wdog_algorithm->address + code_size - 2,
1041                         500, &armv7m_info);
1042
1043                 destroy_reg_param(&reg_params[0]);
1044
1045                 if (retval != ERROR_OK)
1046                         LOG_ERROR("Error executing Kinetis WDOG unlock algorithm");
1047         }
1048
1049         target_free_working_area(target, wdog_algorithm);
1050
1051         return retval;
1052 }
1053
1054 /* Disable the watchdog on Kinetis devices
1055  * Standard Kx WDOG peripheral checks timing and therefore requires to run algo.
1056  */
1057 static int kinetis_disable_wdog_kx(struct target *target)
1058 {
1059         const uint32_t wdog_base = WDOG_BASE;
1060         uint16_t wdog;
1061         int retval;
1062
1063         static const uint8_t kinetis_unlock_wdog_code[] = {
1064 #include "../../../contrib/loaders/watchdog/armv7m_kinetis_wdog.inc"
1065         };
1066
1067         retval = target_read_u16(target, wdog_base + WDOG_STCTRLH_OFFSET, &wdog);
1068         if (retval != ERROR_OK)
1069                 return retval;
1070
1071         if ((wdog & 0x1) == 0) {
1072                 /* watchdog already disabled */
1073                 return ERROR_OK;
1074         }
1075         LOG_INFO("Disabling Kinetis watchdog (initial WDOG_STCTRLH = 0x%04" PRIx16 ")", wdog);
1076
1077         retval = kinetis_disable_wdog_algo(target, sizeof(kinetis_unlock_wdog_code), kinetis_unlock_wdog_code, wdog_base);
1078         if (retval != ERROR_OK)
1079                 return retval;
1080
1081         retval = target_read_u16(target, wdog_base + WDOG_STCTRLH_OFFSET, &wdog);
1082         if (retval != ERROR_OK)
1083                 return retval;
1084
1085         LOG_INFO("WDOG_STCTRLH = 0x%04" PRIx16, wdog);
1086         return (wdog & 0x1) ? ERROR_FAIL : ERROR_OK;
1087 }
1088
1089 static int kinetis_disable_wdog32(struct target *target, uint32_t wdog_base)
1090 {
1091         uint32_t wdog_cs;
1092         int retval;
1093
1094         static const uint8_t kinetis_unlock_wdog_code[] = {
1095 #include "../../../contrib/loaders/watchdog/armv7m_kinetis_wdog32.inc"
1096         };
1097
1098         retval = target_read_u32(target, wdog_base + WDOG32_CS_OFFSET, &wdog_cs);
1099         if (retval != ERROR_OK)
1100                 return retval;
1101
1102         if ((wdog_cs & 0x80) == 0)
1103                 return ERROR_OK; /* watchdog already disabled */
1104
1105         LOG_INFO("Disabling Kinetis watchdog (initial WDOG_CS 0x%08" PRIx32 ")", wdog_cs);
1106
1107         retval = kinetis_disable_wdog_algo(target, sizeof(kinetis_unlock_wdog_code), kinetis_unlock_wdog_code, wdog_base);
1108         if (retval != ERROR_OK)
1109                 return retval;
1110
1111         retval = target_read_u32(target, wdog_base + WDOG32_CS_OFFSET, &wdog_cs);
1112         if (retval != ERROR_OK)
1113                 return retval;
1114
1115         if ((wdog_cs & 0x80) == 0)
1116                 return ERROR_OK; /* watchdog disabled successfully */
1117
1118         LOG_ERROR("Cannot disable Kinetis watchdog (WDOG_CS 0x%08" PRIx32 "), issue 'reset init'", wdog_cs);
1119         return ERROR_FAIL;
1120 }
1121
1122 static int kinetis_disable_wdog(struct kinetis_chip *k_chip)
1123 {
1124         struct target *target = k_chip->target;
1125         uint8_t sim_copc;
1126         int retval;
1127
1128         if (!k_chip->probed) {
1129                 retval = kinetis_probe_chip(k_chip);
1130                 if (retval != ERROR_OK)
1131                         return retval;
1132         }
1133
1134         switch (k_chip->watchdog_type) {
1135         case KINETIS_WDOG_K:
1136                 return kinetis_disable_wdog_kx(target);
1137
1138         case KINETIS_WDOG_COP:
1139                 retval = target_read_u8(target, SIM_COPC, &sim_copc);
1140                 if (retval != ERROR_OK)
1141                         return retval;
1142
1143                 if ((sim_copc & 0xc) == 0)
1144                         return ERROR_OK; /* watchdog already disabled */
1145
1146                 LOG_INFO("Disabling Kinetis watchdog (initial SIM_COPC 0x%02" PRIx8 ")", sim_copc);
1147                 retval = target_write_u8(target, SIM_COPC, sim_copc & ~0xc);
1148                 if (retval != ERROR_OK)
1149                         return retval;
1150
1151                 retval = target_read_u8(target, SIM_COPC, &sim_copc);
1152                 if (retval != ERROR_OK)
1153                         return retval;
1154
1155                 if ((sim_copc & 0xc) == 0)
1156                         return ERROR_OK; /* watchdog disabled successfully */
1157
1158                 LOG_ERROR("Cannot disable Kinetis watchdog (SIM_COPC 0x%02" PRIx8 "), issue 'reset init'", sim_copc);
1159                 return ERROR_FAIL;
1160
1161         case KINETIS_WDOG32_KE1X:
1162                 return kinetis_disable_wdog32(target, WDOG32_KE1X);
1163
1164         case KINETIS_WDOG32_KL28:
1165                 return kinetis_disable_wdog32(target, WDOG32_KL28);
1166
1167         default:
1168                 return ERROR_OK;
1169         }
1170 }
1171
1172 COMMAND_HANDLER(kinetis_disable_wdog_handler)
1173 {
1174         int result;
1175         struct target *target = get_current_target(CMD_CTX);
1176         struct kinetis_chip *k_chip = kinetis_get_chip(target);
1177
1178         if (k_chip == NULL)
1179                 return ERROR_FAIL;
1180
1181         if (CMD_ARGC > 0)
1182                 return ERROR_COMMAND_SYNTAX_ERROR;
1183
1184         result = kinetis_disable_wdog(k_chip);
1185         return result;
1186 }
1187
1188
1189 static int kinetis_ftfx_decode_error(uint8_t fstat)
1190 {
1191         if (fstat & 0x20) {
1192                 LOG_ERROR("Flash operation failed, illegal command");
1193                 return ERROR_FLASH_OPER_UNSUPPORTED;
1194
1195         } else if (fstat & 0x10)
1196                 LOG_ERROR("Flash operation failed, protection violated");
1197
1198         else if (fstat & 0x40)
1199                 LOG_ERROR("Flash operation failed, read collision");
1200
1201         else if (fstat & 0x80)
1202                 return ERROR_OK;
1203
1204         else
1205                 LOG_ERROR("Flash operation timed out");
1206
1207         return ERROR_FLASH_OPERATION_FAILED;
1208 }
1209
1210 static int kinetis_ftfx_clear_error(struct target *target)
1211 {
1212         /* reset error flags */
1213         return target_write_u8(target, FTFx_FSTAT, 0x70);
1214 }
1215
1216
1217 static int kinetis_ftfx_prepare(struct target *target)
1218 {
1219         int result;
1220         uint8_t fstat;
1221
1222         /* wait until busy */
1223         for (unsigned int i = 0; i < 50; i++) {
1224                 result = target_read_u8(target, FTFx_FSTAT, &fstat);
1225                 if (result != ERROR_OK)
1226                         return result;
1227
1228                 if (fstat & 0x80)
1229                         break;
1230         }
1231
1232         if ((fstat & 0x80) == 0) {
1233                 LOG_ERROR("Flash controller is busy");
1234                 return ERROR_FLASH_OPERATION_FAILED;
1235         }
1236         if (fstat != 0x80) {
1237                 /* reset error flags */
1238                 result = kinetis_ftfx_clear_error(target);
1239         }
1240         return result;
1241 }
1242
1243 /* Kinetis Program-LongWord Microcodes */
1244 static const uint8_t kinetis_flash_write_code[] = {
1245 #include "../../../contrib/loaders/flash/kinetis/kinetis_flash.inc"
1246 };
1247
1248 /* Program LongWord Block Write */
1249 static int kinetis_write_block(struct flash_bank *bank, const uint8_t *buffer,
1250                 uint32_t offset, uint32_t wcount)
1251 {
1252         struct target *target = bank->target;
1253         uint32_t buffer_size;
1254         struct working_area *write_algorithm;
1255         struct working_area *source;
1256         struct kinetis_flash_bank *k_bank = bank->driver_priv;
1257         uint32_t address = k_bank->prog_base + offset;
1258         uint32_t end_address;
1259         struct reg_param reg_params[5];
1260         struct armv7m_algorithm armv7m_info;
1261         int retval;
1262         uint8_t fstat;
1263
1264         /* allocate working area with flash programming code */
1265         if (target_alloc_working_area(target, sizeof(kinetis_flash_write_code),
1266                         &write_algorithm) != ERROR_OK) {
1267                 LOG_WARNING("no working area available, can't do block memory writes");
1268                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1269         }
1270
1271         retval = target_write_buffer(target, write_algorithm->address,
1272                 sizeof(kinetis_flash_write_code), kinetis_flash_write_code);
1273         if (retval != ERROR_OK)
1274                 return retval;
1275
1276         /* memory buffer, size *must* be multiple of word */
1277         buffer_size = target_get_working_area_avail(target) & ~(sizeof(uint32_t) - 1);
1278         if (buffer_size < 256) {
1279                 LOG_WARNING("large enough working area not available, can't do block memory writes");
1280                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1281         } else if (buffer_size > 16384) {
1282                 /* probably won't benefit from more than 16k ... */
1283                 buffer_size = 16384;
1284         }
1285
1286         if (target_alloc_working_area(target, buffer_size, &source) != ERROR_OK) {
1287                 LOG_ERROR("allocating working area failed");
1288                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1289         }
1290
1291         armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
1292         armv7m_info.core_mode = ARM_MODE_THREAD;
1293
1294         init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT); /* address */
1295         init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT); /* word count */
1296         init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT);
1297         init_reg_param(&reg_params[3], "r3", 32, PARAM_OUT);
1298         init_reg_param(&reg_params[4], "r4", 32, PARAM_OUT);
1299
1300         buf_set_u32(reg_params[0].value, 0, 32, address);
1301         buf_set_u32(reg_params[1].value, 0, 32, wcount);
1302         buf_set_u32(reg_params[2].value, 0, 32, source->address);
1303         buf_set_u32(reg_params[3].value, 0, 32, source->address + source->size);
1304         buf_set_u32(reg_params[4].value, 0, 32, FTFx_FSTAT);
1305
1306         retval = target_run_flash_async_algorithm(target, buffer, wcount, 4,
1307                                                 0, NULL,
1308                                                 5, reg_params,
1309                                                 source->address, source->size,
1310                                                 write_algorithm->address, 0,
1311                                                 &armv7m_info);
1312
1313         if (retval == ERROR_FLASH_OPERATION_FAILED) {
1314                 end_address = buf_get_u32(reg_params[0].value, 0, 32);
1315
1316                 LOG_ERROR("Error writing flash at %08" PRIx32, end_address);
1317
1318                 retval = target_read_u8(target, FTFx_FSTAT, &fstat);
1319                 if (retval == ERROR_OK) {
1320                         retval = kinetis_ftfx_decode_error(fstat);
1321
1322                         /* reset error flags */
1323                         target_write_u8(target, FTFx_FSTAT, 0x70);
1324                 }
1325         } else if (retval != ERROR_OK)
1326                 LOG_ERROR("Error executing kinetis Flash programming algorithm");
1327
1328         target_free_working_area(target, source);
1329         target_free_working_area(target, write_algorithm);
1330
1331         destroy_reg_param(&reg_params[0]);
1332         destroy_reg_param(&reg_params[1]);
1333         destroy_reg_param(&reg_params[2]);
1334         destroy_reg_param(&reg_params[3]);
1335         destroy_reg_param(&reg_params[4]);
1336
1337         return retval;
1338 }
1339
1340 static int kinetis_protect(struct flash_bank *bank, int set, unsigned int first,
1341                 unsigned int last)
1342 {
1343         if (allow_fcf_writes) {
1344                 LOG_ERROR("Protection setting is possible with 'kinetis fcf_source protection' only!");
1345                 return ERROR_FAIL;
1346         }
1347
1348         if (!bank->prot_blocks || bank->num_prot_blocks == 0) {
1349                 LOG_ERROR("No protection possible for current bank!");
1350                 return ERROR_FLASH_BANK_INVALID;
1351         }
1352
1353         for (unsigned int i = first; i < bank->num_prot_blocks && i <= last; i++)
1354                 bank->prot_blocks[i].is_protected = set;
1355
1356         LOG_INFO("Protection bits will be written at the next FCF sector erase or write.");
1357         LOG_INFO("Do not issue 'flash info' command until protection is written,");
1358         LOG_INFO("doing so would re-read protection status from MCU.");
1359
1360         return ERROR_OK;
1361 }
1362
1363 static int kinetis_protect_check(struct flash_bank *bank)
1364 {
1365         struct kinetis_flash_bank *k_bank = bank->driver_priv;
1366         int result;
1367         int b;
1368         uint32_t fprot;
1369
1370         if (k_bank->flash_class == FC_PFLASH) {
1371
1372                 /* read protection register */
1373                 result = target_read_u32(bank->target, FTFx_FPROT3, &fprot);
1374                 if (result != ERROR_OK)
1375                         return result;
1376
1377                 /* Every bit protects 1/32 of the full flash (not necessarily just this bank) */
1378
1379         } else if (k_bank->flash_class == FC_FLEX_NVM) {
1380                 uint8_t fdprot;
1381
1382                 /* read protection register */
1383                 result = target_read_u8(bank->target, FTFx_FDPROT, &fdprot);
1384                 if (result != ERROR_OK)
1385                         return result;
1386
1387                 fprot = fdprot;
1388
1389         } else {
1390                 LOG_ERROR("Protection checks for FlexRAM not supported");
1391                 return ERROR_FLASH_BANK_INVALID;
1392         }
1393
1394         b = k_bank->protection_block;
1395         for (unsigned int i = 0; i < bank->num_prot_blocks; i++) {
1396                 if ((fprot >> b) & 1)
1397                         bank->prot_blocks[i].is_protected = 0;
1398                 else
1399                         bank->prot_blocks[i].is_protected = 1;
1400
1401                 b++;
1402         }
1403
1404         return ERROR_OK;
1405 }
1406
1407
1408 static int kinetis_fill_fcf(struct flash_bank *bank, uint8_t *fcf)
1409 {
1410         uint32_t fprot = 0xffffffff;
1411         uint8_t fsec = 0xfe;             /* set MCU unsecure */
1412         uint8_t fdprot = 0xff;
1413         unsigned num_blocks;
1414         uint32_t pflash_bit;
1415         uint8_t dflash_bit;
1416         struct flash_bank *bank_iter;
1417         struct kinetis_flash_bank *k_bank = bank->driver_priv;
1418         struct kinetis_chip *k_chip = k_bank->k_chip;
1419
1420         memset(fcf, 0xff, FCF_SIZE);
1421
1422         pflash_bit = 1;
1423         dflash_bit = 1;
1424
1425         /* iterate over all kinetis banks */
1426         /* current bank is bank 0, it contains FCF */
1427         num_blocks = k_chip->num_pflash_blocks + k_chip->num_nvm_blocks;
1428         for (unsigned int bank_idx = 0; bank_idx < num_blocks; bank_idx++) {
1429                 k_bank = &(k_chip->banks[bank_idx]);
1430                 bank_iter = k_bank->bank;
1431
1432                 if (bank_iter == NULL) {
1433                         LOG_WARNING("Missing bank %u configuration, FCF protection flags may be incomplette", bank_idx);
1434                         continue;
1435                 }
1436
1437                 kinetis_auto_probe(bank_iter);
1438
1439                 assert(bank_iter->prot_blocks);
1440
1441                 if (k_bank->flash_class == FC_PFLASH) {
1442                         for (unsigned int i = 0; i < bank_iter->num_prot_blocks; i++) {
1443                                 if (bank_iter->prot_blocks[i].is_protected == 1)
1444                                         fprot &= ~pflash_bit;
1445
1446                                 pflash_bit <<= 1;
1447                         }
1448
1449                 } else if (k_bank->flash_class == FC_FLEX_NVM) {
1450                         for (unsigned int i = 0; i < bank_iter->num_prot_blocks; i++) {
1451                                 if (bank_iter->prot_blocks[i].is_protected == 1)
1452                                         fdprot &= ~dflash_bit;
1453
1454                                 dflash_bit <<= 1;
1455                         }
1456
1457                 }
1458         }
1459
1460         target_buffer_set_u32(bank->target, fcf + FCF_FPROT, fprot);
1461         fcf[FCF_FSEC] = fsec;
1462         fcf[FCF_FOPT] = fcf_fopt;
1463         fcf[FCF_FDPROT] = fdprot;
1464         return ERROR_OK;
1465 }
1466
1467 static int kinetis_ftfx_command(struct target *target, uint8_t fcmd, uint32_t faddr,
1468                                 uint8_t fccob4, uint8_t fccob5, uint8_t fccob6, uint8_t fccob7,
1469                                 uint8_t fccob8, uint8_t fccob9, uint8_t fccoba, uint8_t fccobb,
1470                                 uint8_t *ftfx_fstat)
1471 {
1472         uint8_t command[12] = {faddr & 0xff, (faddr >> 8) & 0xff, (faddr >> 16) & 0xff, fcmd,
1473                         fccob7, fccob6, fccob5, fccob4,
1474                         fccobb, fccoba, fccob9, fccob8};
1475         int result;
1476         uint8_t fstat;
1477         int64_t ms_timeout = timeval_ms() + 250;
1478
1479         result = target_write_memory(target, FTFx_FCCOB3, 4, 3, command);
1480         if (result != ERROR_OK)
1481                 return result;
1482
1483         /* start command */
1484         result = target_write_u8(target, FTFx_FSTAT, 0x80);
1485         if (result != ERROR_OK)
1486                 return result;
1487
1488         /* wait for done */
1489         do {
1490                 result = target_read_u8(target, FTFx_FSTAT, &fstat);
1491
1492                 if (result != ERROR_OK)
1493                         return result;
1494
1495                 if (fstat & 0x80)
1496                         break;
1497
1498         } while (timeval_ms() < ms_timeout);
1499
1500         if (ftfx_fstat)
1501                 *ftfx_fstat = fstat;
1502
1503         if ((fstat & 0xf0) != 0x80) {
1504                 LOG_DEBUG("ftfx command failed FSTAT: %02X FCCOB: %02X%02X%02X%02X %02X%02X%02X%02X %02X%02X%02X%02X",
1505                          fstat, command[3], command[2], command[1], command[0],
1506                          command[7], command[6], command[5], command[4],
1507                          command[11], command[10], command[9], command[8]);
1508
1509                 return kinetis_ftfx_decode_error(fstat);
1510         }
1511
1512         return ERROR_OK;
1513 }
1514
1515
1516 static int kinetis_read_pmstat(struct kinetis_chip *k_chip, uint8_t *pmstat)
1517 {
1518         int result;
1519         uint32_t stat32;
1520         struct target *target = k_chip->target;
1521
1522         switch (k_chip->sysmodectrlr_type) {
1523         case KINETIS_SMC:
1524                 result = target_read_u8(target, SMC_PMSTAT, pmstat);
1525                 return result;
1526
1527         case KINETIS_SMC32:
1528                 result = target_read_u32(target, SMC32_PMSTAT, &stat32);
1529                 if (result == ERROR_OK)
1530                         *pmstat = stat32 & 0xff;
1531                 return result;
1532         }
1533         return ERROR_FAIL;
1534 }
1535
1536 static int kinetis_check_run_mode(struct kinetis_chip *k_chip)
1537 {
1538         int result;
1539         uint8_t pmstat;
1540         struct target *target;
1541
1542         if (k_chip == NULL) {
1543                 LOG_ERROR("Chip not probed.");
1544                 return ERROR_FAIL;
1545         }
1546         target = k_chip->target;
1547
1548         if (target->state != TARGET_HALTED) {
1549                 LOG_ERROR("Target not halted");
1550                 return ERROR_TARGET_NOT_HALTED;
1551         }
1552
1553         result = kinetis_read_pmstat(k_chip, &pmstat);
1554         if (result != ERROR_OK)
1555                 return result;
1556
1557         if (pmstat == PM_STAT_RUN)
1558                 return ERROR_OK;
1559
1560         if (pmstat == PM_STAT_VLPR) {
1561                 /* It is safe to switch from VLPR to RUN mode without changing clock */
1562                 LOG_INFO("Switching from VLPR to RUN mode.");
1563
1564                 switch (k_chip->sysmodectrlr_type) {
1565                 case KINETIS_SMC:
1566                         result = target_write_u8(target, SMC_PMCTRL, PM_CTRL_RUNM_RUN);
1567                         break;
1568
1569                 case KINETIS_SMC32:
1570                         result = target_write_u32(target, SMC32_PMCTRL, PM_CTRL_RUNM_RUN);
1571                         break;
1572                 }
1573                 if (result != ERROR_OK)
1574                         return result;
1575
1576                 for (unsigned int i = 100; i > 0; i--) {
1577                         result = kinetis_read_pmstat(k_chip, &pmstat);
1578                         if (result != ERROR_OK)
1579                                 return result;
1580
1581                         if (pmstat == PM_STAT_RUN)
1582                                 return ERROR_OK;
1583                 }
1584         }
1585
1586         LOG_ERROR("Flash operation not possible in current run mode: SMC_PMSTAT: 0x%x", pmstat);
1587         LOG_ERROR("Issue a 'reset init' command.");
1588         return ERROR_TARGET_NOT_HALTED;
1589 }
1590
1591
1592 static void kinetis_invalidate_flash_cache(struct kinetis_chip *k_chip)
1593 {
1594         struct target *target = k_chip->target;
1595
1596         switch (k_chip->cache_type) {
1597         case KINETIS_CACHE_K:
1598                 target_write_u8(target, FMC_PFB01CR + 2, 0xf0);
1599                 /* Set CINV_WAY bits - request invalidate of all cache ways */
1600                 /* FMC_PFB0CR has same address and CINV_WAY bits as FMC_PFB01CR */
1601                 break;
1602
1603         case KINETIS_CACHE_L:
1604                 target_write_u8(target, MCM_PLACR + 1, 0x04);
1605                 /* set bit CFCC - Clear Flash Controller Cache */
1606                 break;
1607
1608         case KINETIS_CACHE_MSCM:
1609                 target_write_u32(target, MSCM_OCMDR0, 0x30);
1610                 /* disable data prefetch and flash speculate */
1611                 break;
1612
1613         default:
1614                 break;
1615         }
1616 }
1617
1618
1619 static int kinetis_erase(struct flash_bank *bank, unsigned int first,
1620                 unsigned int last)
1621 {
1622         int result;
1623         struct kinetis_flash_bank *k_bank = bank->driver_priv;
1624         struct kinetis_chip *k_chip = k_bank->k_chip;
1625
1626         result = kinetis_check_run_mode(k_chip);
1627         if (result != ERROR_OK)
1628                 return result;
1629
1630         /* reset error flags */
1631         result = kinetis_ftfx_prepare(bank->target);
1632         if (result != ERROR_OK)
1633                 return result;
1634
1635         if ((first > bank->num_sectors) || (last > bank->num_sectors))
1636                 return ERROR_FLASH_OPERATION_FAILED;
1637
1638         /*
1639          * FIXME: TODO: use the 'Erase Flash Block' command if the
1640          * requested erase is PFlash or NVM and encompasses the entire
1641          * block.  Should be quicker.
1642          */
1643         for (unsigned int i = first; i <= last; i++) {
1644                 /* set command and sector address */
1645                 result = kinetis_ftfx_command(bank->target, FTFx_CMD_SECTERASE, k_bank->prog_base + bank->sectors[i].offset,
1646                                 0, 0, 0, 0,  0, 0, 0, 0,  NULL);
1647
1648                 if (result != ERROR_OK) {
1649                         LOG_WARNING("erase sector %u failed", i);
1650                         return ERROR_FLASH_OPERATION_FAILED;
1651                 }
1652
1653                 bank->sectors[i].is_erased = 1;
1654
1655                 if (k_bank->prog_base == 0
1656                         && bank->sectors[i].offset <= FCF_ADDRESS
1657                         && bank->sectors[i].offset + bank->sectors[i].size > FCF_ADDRESS + FCF_SIZE) {
1658                         if (allow_fcf_writes) {
1659                                 LOG_WARNING("Flash Configuration Field erased, DO NOT reset or power off the device");
1660                                 LOG_WARNING("until correct FCF is programmed or MCU gets security lock.");
1661                         } else {
1662                                 uint8_t fcf_buffer[FCF_SIZE];
1663
1664                                 kinetis_fill_fcf(bank, fcf_buffer);
1665                                 result = kinetis_write_inner(bank, fcf_buffer, FCF_ADDRESS, FCF_SIZE);
1666                                 if (result != ERROR_OK)
1667                                         LOG_WARNING("Flash Configuration Field write failed");
1668                                 bank->sectors[i].is_erased = 0;
1669                         }
1670                 }
1671         }
1672
1673         kinetis_invalidate_flash_cache(k_bank->k_chip);
1674
1675         return ERROR_OK;
1676 }
1677
1678 static int kinetis_make_ram_ready(struct target *target)
1679 {
1680         int result;
1681         uint8_t ftfx_fcnfg;
1682
1683         /* check if ram ready */
1684         result = target_read_u8(target, FTFx_FCNFG, &ftfx_fcnfg);
1685         if (result != ERROR_OK)
1686                 return result;
1687
1688         if (ftfx_fcnfg & (1 << 1))
1689                 return ERROR_OK;        /* ram ready */
1690
1691         /* make flex ram available */
1692         result = kinetis_ftfx_command(target, FTFx_CMD_SETFLEXRAM, 0x00ff0000,
1693                                  0, 0, 0, 0,  0, 0, 0, 0,  NULL);
1694         if (result != ERROR_OK)
1695                 return ERROR_FLASH_OPERATION_FAILED;
1696
1697         /* check again */
1698         result = target_read_u8(target, FTFx_FCNFG, &ftfx_fcnfg);
1699         if (result != ERROR_OK)
1700                 return result;
1701
1702         if (ftfx_fcnfg & (1 << 1))
1703                 return ERROR_OK;        /* ram ready */
1704
1705         return ERROR_FLASH_OPERATION_FAILED;
1706 }
1707
1708
1709 static int kinetis_write_sections(struct flash_bank *bank, const uint8_t *buffer,
1710                          uint32_t offset, uint32_t count)
1711 {
1712         int result = ERROR_OK;
1713         struct kinetis_flash_bank *k_bank = bank->driver_priv;
1714         struct kinetis_chip *k_chip = k_bank->k_chip;
1715         uint8_t *buffer_aligned = NULL;
1716         /*
1717          * Kinetis uses different terms for the granularity of
1718          * sector writes, e.g. "phrase" or "128 bits".  We use
1719          * the generic term "chunk". The largest possible
1720          * Kinetis "chunk" is 16 bytes (128 bits).
1721          */
1722         uint32_t prog_section_chunk_bytes = k_bank->sector_size >> 8;
1723         uint32_t prog_size_bytes = k_chip->max_flash_prog_size;
1724
1725         while (count > 0) {
1726                 uint32_t size = prog_size_bytes - offset % prog_size_bytes;
1727                 uint32_t align_begin = offset % prog_section_chunk_bytes;
1728                 uint32_t align_end;
1729                 uint32_t size_aligned;
1730                 uint16_t chunk_count;
1731                 uint8_t ftfx_fstat;
1732
1733                 if (size > count)
1734                         size = count;
1735
1736                 align_end = (align_begin + size) % prog_section_chunk_bytes;
1737                 if (align_end)
1738                         align_end = prog_section_chunk_bytes - align_end;
1739
1740                 size_aligned = align_begin + size + align_end;
1741                 chunk_count = size_aligned / prog_section_chunk_bytes;
1742
1743                 if (size != size_aligned) {
1744                         /* aligned section: the first, the last or the only */
1745                         if (!buffer_aligned)
1746                                 buffer_aligned = malloc(prog_size_bytes);
1747
1748                         memset(buffer_aligned, 0xff, size_aligned);
1749                         memcpy(buffer_aligned + align_begin, buffer, size);
1750
1751                         result = target_write_memory(bank->target, k_chip->progr_accel_ram,
1752                                                 4, size_aligned / 4, buffer_aligned);
1753
1754                         LOG_DEBUG("section @ " TARGET_ADDR_FMT " aligned begin %" PRIu32
1755                                         ", end %" PRIu32,
1756                                         bank->base + offset, align_begin, align_end);
1757                 } else
1758                         result = target_write_memory(bank->target, k_chip->progr_accel_ram,
1759                                                 4, size_aligned / 4, buffer);
1760
1761                 LOG_DEBUG("write section @ " TARGET_ADDR_FMT " with length %" PRIu32
1762                                 " bytes",
1763                           bank->base + offset, size);
1764
1765                 if (result != ERROR_OK) {
1766                         LOG_ERROR("target_write_memory failed");
1767                         break;
1768                 }
1769
1770                 /* execute section-write command */
1771                 result = kinetis_ftfx_command(bank->target, FTFx_CMD_SECTWRITE,
1772                                 k_bank->prog_base + offset - align_begin,
1773                                 chunk_count>>8, chunk_count, 0, 0,
1774                                 0, 0, 0, 0,  &ftfx_fstat);
1775
1776                 if (result != ERROR_OK) {
1777                         LOG_ERROR("Error writing section at " TARGET_ADDR_FMT,
1778                                         bank->base + offset);
1779                         break;
1780                 }
1781
1782                 if (ftfx_fstat & 0x01) {
1783                         LOG_ERROR("Flash write error at " TARGET_ADDR_FMT,
1784                                         bank->base + offset);
1785                         if (k_bank->prog_base == 0 && offset == FCF_ADDRESS + FCF_SIZE
1786                                         && (k_chip->flash_support & FS_WIDTH_256BIT)) {
1787                                 LOG_ERROR("Flash write immediately after the end of Flash Config Field shows error");
1788                                 LOG_ERROR("because the flash memory is 256 bits wide (data were written correctly).");
1789                                 LOG_ERROR("Either change the linker script to add a gap of 16 bytes after FCF");
1790                                 LOG_ERROR("or set 'kinetis fcf_source write'");
1791                         }
1792                 }
1793
1794                 buffer += size;
1795                 offset += size;
1796                 count -= size;
1797
1798                 keep_alive();
1799         }
1800
1801         free(buffer_aligned);
1802         return result;
1803 }
1804
1805
1806 static int kinetis_write_inner(struct flash_bank *bank, const uint8_t *buffer,
1807                          uint32_t offset, uint32_t count)
1808 {
1809         int result;
1810         bool fallback = false;
1811         struct kinetis_flash_bank *k_bank = bank->driver_priv;
1812         struct kinetis_chip *k_chip = k_bank->k_chip;
1813
1814         if (!(k_chip->flash_support & FS_PROGRAM_SECTOR)) {
1815                 /* fallback to longword write */
1816                 fallback = true;
1817                 LOG_INFO("This device supports Program Longword execution only.");
1818         } else {
1819                 result = kinetis_make_ram_ready(bank->target);
1820                 if (result != ERROR_OK) {
1821                         fallback = true;
1822                         LOG_WARNING("FlexRAM not ready, fallback to slow longword write.");
1823                 }
1824         }
1825
1826         LOG_DEBUG("flash write @ " TARGET_ADDR_FMT, bank->base + offset);
1827
1828         if (!fallback) {
1829                 /* program section command */
1830                 kinetis_write_sections(bank, buffer, offset, count);
1831         } else if (k_chip->flash_support & FS_PROGRAM_LONGWORD) {
1832                 /* program longword command, not supported in FTFE */
1833                 uint8_t *new_buffer = NULL;
1834
1835                 /* check word alignment */
1836                 if (offset & 0x3) {
1837                         LOG_ERROR("offset 0x%" PRIx32 " breaks the required alignment", offset);
1838                         return ERROR_FLASH_DST_BREAKS_ALIGNMENT;
1839                 }
1840
1841                 if (count & 0x3) {
1842                         uint32_t old_count = count;
1843                         count = (old_count | 3) + 1;
1844                         new_buffer = malloc(count);
1845                         if (new_buffer == NULL) {
1846                                 LOG_ERROR("odd number of bytes to write and no memory "
1847                                         "for padding buffer");
1848                                 return ERROR_FAIL;
1849                         }
1850                         LOG_INFO("odd number of bytes to write (%" PRIu32 "), extending to %" PRIu32 " "
1851                                 "and padding with 0xff", old_count, count);
1852                         memset(new_buffer + old_count, 0xff, count - old_count);
1853                         buffer = memcpy(new_buffer, buffer, old_count);
1854                 }
1855
1856                 uint32_t words_remaining = count / 4;
1857
1858                 kinetis_disable_wdog(k_chip);
1859
1860                 /* try using a block write */
1861                 result = kinetis_write_block(bank, buffer, offset, words_remaining);
1862
1863                 if (result == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) {
1864                         /* if block write failed (no sufficient working area),
1865                          * we use normal (slow) single word accesses */
1866                         LOG_WARNING("couldn't use block writes, falling back to single "
1867                                 "memory accesses");
1868
1869                         while (words_remaining) {
1870                                 uint8_t ftfx_fstat;
1871
1872                                 LOG_DEBUG("write longword @ %08" PRIx32, (uint32_t)(bank->base + offset));
1873
1874                                 result = kinetis_ftfx_command(bank->target, FTFx_CMD_LWORDPROG, k_bank->prog_base + offset,
1875                                                 buffer[3], buffer[2], buffer[1], buffer[0],
1876                                                 0, 0, 0, 0,  &ftfx_fstat);
1877
1878                                 if (result != ERROR_OK) {
1879                                         LOG_ERROR("Error writing longword at " TARGET_ADDR_FMT,
1880                                                         bank->base + offset);
1881                                         break;
1882                                 }
1883
1884                                 if (ftfx_fstat & 0x01)
1885                                         LOG_ERROR("Flash write error at " TARGET_ADDR_FMT,
1886                                                         bank->base + offset);
1887
1888                                 buffer += 4;
1889                                 offset += 4;
1890                                 words_remaining--;
1891
1892                                 keep_alive();
1893                         }
1894                 }
1895                 free(new_buffer);
1896         } else {
1897                 LOG_ERROR("Flash write strategy not implemented");
1898                 return ERROR_FLASH_OPERATION_FAILED;
1899         }
1900
1901         kinetis_invalidate_flash_cache(k_chip);
1902         return result;
1903 }
1904
1905
1906 static int kinetis_write(struct flash_bank *bank, const uint8_t *buffer,
1907                          uint32_t offset, uint32_t count)
1908 {
1909         int result;
1910         bool set_fcf = false;
1911         bool fcf_in_data_valid = false;
1912         int sect = 0;
1913         struct kinetis_flash_bank *k_bank = bank->driver_priv;
1914         struct kinetis_chip *k_chip = k_bank->k_chip;
1915         uint8_t fcf_buffer[FCF_SIZE];
1916         uint8_t fcf_current[FCF_SIZE];
1917         uint8_t fcf_in_data[FCF_SIZE];
1918
1919         result = kinetis_check_run_mode(k_chip);
1920         if (result != ERROR_OK)
1921                 return result;
1922
1923         /* reset error flags */
1924         result = kinetis_ftfx_prepare(bank->target);
1925         if (result != ERROR_OK)
1926                 return result;
1927
1928         if (k_bank->prog_base == 0 && !allow_fcf_writes) {
1929                 if (bank->sectors[1].offset <= FCF_ADDRESS)
1930                         sect = 1;       /* 1kb sector, FCF in 2nd sector */
1931
1932                 if (offset < bank->sectors[sect].offset + bank->sectors[sect].size
1933                         && offset + count > bank->sectors[sect].offset)
1934                         set_fcf = true; /* write to any part of sector with FCF */
1935         }
1936
1937         if (set_fcf) {
1938                 kinetis_fill_fcf(bank, fcf_buffer);
1939
1940                 fcf_in_data_valid = offset <= FCF_ADDRESS
1941                                          && offset + count >= FCF_ADDRESS + FCF_SIZE;
1942                 if (fcf_in_data_valid) {
1943                         memcpy(fcf_in_data, buffer + FCF_ADDRESS - offset, FCF_SIZE);
1944                         if (memcmp(fcf_in_data + FCF_FPROT, fcf_buffer, 4)) {
1945                                 fcf_in_data_valid = false;
1946                                 LOG_INFO("Flash protection requested in programmed file differs from current setting.");
1947                         }
1948                         if (fcf_in_data[FCF_FDPROT] != fcf_buffer[FCF_FDPROT]) {
1949                                 fcf_in_data_valid = false;
1950                                 LOG_INFO("Data flash protection requested in programmed file differs from current setting.");
1951                         }
1952                         if ((fcf_in_data[FCF_FSEC] & 3) != 2) {
1953                                 fcf_in_data_valid = false;
1954                                 LOG_INFO("Device security requested in programmed file!");
1955                         } else if (k_chip->flash_support & FS_ECC
1956                             && fcf_in_data[FCF_FSEC] != fcf_buffer[FCF_FSEC]) {
1957                                 fcf_in_data_valid = false;
1958                                 LOG_INFO("Strange unsecure mode 0x%02" PRIx8
1959                                          "requested in programmed file!",
1960                                          fcf_in_data[FCF_FSEC]);
1961                         }
1962                         if ((k_chip->flash_support & FS_ECC || fcf_fopt_configured)
1963                             && fcf_in_data[FCF_FOPT] != fcf_fopt) {
1964                                 fcf_in_data_valid = false;
1965                                 LOG_INFO("FOPT requested in programmed file differs from current setting.");
1966                         }
1967                         if (!fcf_in_data_valid)
1968                                 LOG_INFO("Expect verify errors at FCF (0x408-0x40f).");
1969                 }
1970         }
1971
1972         if (set_fcf && !fcf_in_data_valid) {
1973                 if (offset < FCF_ADDRESS) {
1974                         /* write part preceding FCF */
1975                         result = kinetis_write_inner(bank, buffer, offset, FCF_ADDRESS - offset);
1976                         if (result != ERROR_OK)
1977                                 return result;
1978                 }
1979
1980                 result = target_read_memory(bank->target, bank->base + FCF_ADDRESS, 4, FCF_SIZE / 4, fcf_current);
1981                 if (result == ERROR_OK && memcmp(fcf_current, fcf_buffer, FCF_SIZE) == 0)
1982                         set_fcf = false;
1983
1984                 if (set_fcf) {
1985                         /* write FCF if differs from flash - eliminate multiple writes */
1986                         result = kinetis_write_inner(bank, fcf_buffer, FCF_ADDRESS, FCF_SIZE);
1987                         if (result != ERROR_OK)
1988                                 return result;
1989                 }
1990
1991                 LOG_WARNING("Flash Configuration Field written.");
1992                 LOG_WARNING("Reset or power off the device to make settings effective.");
1993
1994                 if (offset + count > FCF_ADDRESS + FCF_SIZE) {
1995                         uint32_t delta = FCF_ADDRESS + FCF_SIZE - offset;
1996                         /* write part after FCF */
1997                         result = kinetis_write_inner(bank, buffer + delta, FCF_ADDRESS + FCF_SIZE, count - delta);
1998                 }
1999                 return result;
2000
2001         } else {
2002                 /* no FCF fiddling, normal write */
2003                 return kinetis_write_inner(bank, buffer, offset, count);
2004         }
2005 }
2006
2007
2008 static int kinetis_probe_chip(struct kinetis_chip *k_chip)
2009 {
2010         int result;
2011         uint8_t fcfg1_nvmsize, fcfg1_pfsize, fcfg1_eesize, fcfg1_depart;
2012         uint8_t fcfg2_pflsh;
2013         uint32_t ee_size = 0;
2014         uint32_t pflash_size_k, nvm_size_k, dflash_size_k;
2015         uint32_t pflash_size_m;
2016         unsigned num_blocks = 0;
2017         unsigned maxaddr_shift = 13;
2018         struct target *target = k_chip->target;
2019
2020         unsigned familyid = 0, subfamid = 0;
2021         unsigned cpu_mhz = 120;
2022         bool use_nvm_marking = false;
2023         char flash_marking[12], nvm_marking[2];
2024         char name[40];
2025
2026         k_chip->probed = false;
2027         k_chip->pflash_sector_size = 0;
2028         k_chip->pflash_base = 0;
2029         k_chip->nvm_base = 0x10000000;
2030         k_chip->progr_accel_ram = FLEXRAM;
2031
2032         name[0] = '\0';
2033
2034         if (k_chip->sim_base)
2035                 result = target_read_u32(target, k_chip->sim_base + SIM_SDID_OFFSET, &k_chip->sim_sdid);
2036         else {
2037                 result = target_read_u32(target, SIM_BASE + SIM_SDID_OFFSET, &k_chip->sim_sdid);
2038                 if (result == ERROR_OK)
2039                         k_chip->sim_base = SIM_BASE;
2040                 else {
2041                         result = target_read_u32(target, SIM_BASE_KL28 + SIM_SDID_OFFSET, &k_chip->sim_sdid);
2042                         if (result == ERROR_OK)
2043                                 k_chip->sim_base = SIM_BASE_KL28;
2044                 }
2045         }
2046         if (result != ERROR_OK)
2047                 return result;
2048
2049         if ((k_chip->sim_sdid & (~KINETIS_SDID_K_SERIES_MASK)) == 0) {
2050                 /* older K-series MCU */
2051                 uint32_t mcu_type = k_chip->sim_sdid & KINETIS_K_SDID_TYPE_MASK;
2052                 k_chip->cache_type = KINETIS_CACHE_K;
2053                 k_chip->watchdog_type = KINETIS_WDOG_K;
2054
2055                 switch (mcu_type) {
2056                 case KINETIS_K_SDID_K10_M50:
2057                 case KINETIS_K_SDID_K20_M50:
2058                         /* 1kB sectors */
2059                         k_chip->pflash_sector_size = 1<<10;
2060                         k_chip->nvm_sector_size = 1<<10;
2061                         num_blocks = 2;
2062                         k_chip->flash_support = FS_PROGRAM_LONGWORD | FS_PROGRAM_SECTOR;
2063                         break;
2064                 case KINETIS_K_SDID_K10_M72:
2065                 case KINETIS_K_SDID_K20_M72:
2066                 case KINETIS_K_SDID_K30_M72:
2067                 case KINETIS_K_SDID_K30_M100:
2068                 case KINETIS_K_SDID_K40_M72:
2069                 case KINETIS_K_SDID_K40_M100:
2070                 case KINETIS_K_SDID_K50_M72:
2071                         /* 2kB sectors, 1kB FlexNVM sectors */
2072                         k_chip->pflash_sector_size = 2<<10;
2073                         k_chip->nvm_sector_size = 1<<10;
2074                         num_blocks = 2;
2075                         k_chip->flash_support = FS_PROGRAM_LONGWORD | FS_PROGRAM_SECTOR;
2076                         k_chip->max_flash_prog_size = 1<<10;
2077                         break;
2078                 case KINETIS_K_SDID_K10_M100:
2079                 case KINETIS_K_SDID_K20_M100:
2080                 case KINETIS_K_SDID_K11:
2081                 case KINETIS_K_SDID_K12:
2082                 case KINETIS_K_SDID_K21_M50:
2083                 case KINETIS_K_SDID_K22_M50:
2084                 case KINETIS_K_SDID_K51_M72:
2085                 case KINETIS_K_SDID_K53:
2086                 case KINETIS_K_SDID_K60_M100:
2087                         /* 2kB sectors */
2088                         k_chip->pflash_sector_size = 2<<10;
2089                         k_chip->nvm_sector_size = 2<<10;
2090                         num_blocks = 2;
2091                         k_chip->flash_support = FS_PROGRAM_LONGWORD | FS_PROGRAM_SECTOR;
2092                         break;
2093                 case KINETIS_K_SDID_K21_M120:
2094                 case KINETIS_K_SDID_K22_M120:
2095                         /* 4kB sectors (MK21FN1M0, MK21FX512, MK22FN1M0, MK22FX512) */
2096                         k_chip->pflash_sector_size = 4<<10;
2097                         k_chip->max_flash_prog_size = 1<<10;
2098                         k_chip->nvm_sector_size = 4<<10;
2099                         num_blocks = 2;
2100                         k_chip->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR;
2101                         break;
2102                 case KINETIS_K_SDID_K10_M120:
2103                 case KINETIS_K_SDID_K20_M120:
2104                 case KINETIS_K_SDID_K60_M150:
2105                 case KINETIS_K_SDID_K70_M150:
2106                         /* 4kB sectors */
2107                         k_chip->pflash_sector_size = 4<<10;
2108                         k_chip->nvm_sector_size = 4<<10;
2109                         num_blocks = 4;
2110                         k_chip->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR;
2111                         break;
2112                 default:
2113                         LOG_ERROR("Unsupported K-family FAMID");
2114                 }
2115
2116                 for (size_t idx = 0; idx < ARRAY_SIZE(kinetis_types_old); idx++) {
2117                         if (kinetis_types_old[idx].sdid == mcu_type) {
2118                                 strcpy(name, kinetis_types_old[idx].name);
2119                                 use_nvm_marking = true;
2120                                 break;
2121                         }
2122                 }
2123
2124         } else {
2125                 /* Newer K-series or KL series MCU */
2126                 familyid = (k_chip->sim_sdid & KINETIS_SDID_FAMILYID_MASK) >> KINETIS_SDID_FAMILYID_SHIFT;
2127                 subfamid = (k_chip->sim_sdid & KINETIS_SDID_SUBFAMID_MASK) >> KINETIS_SDID_SUBFAMID_SHIFT;
2128
2129                 switch (k_chip->sim_sdid & KINETIS_SDID_SERIESID_MASK) {
2130                 case KINETIS_SDID_SERIESID_K:
2131                         use_nvm_marking = true;
2132                         k_chip->cache_type = KINETIS_CACHE_K;
2133                         k_chip->watchdog_type = KINETIS_WDOG_K;
2134
2135                         switch (k_chip->sim_sdid & (KINETIS_SDID_FAMILYID_MASK | KINETIS_SDID_SUBFAMID_MASK)) {
2136                         case KINETIS_SDID_FAMILYID_K0X | KINETIS_SDID_SUBFAMID_KX2:
2137                                 /* K02FN64, K02FN128: FTFA, 2kB sectors */
2138                                 k_chip->pflash_sector_size = 2<<10;
2139                                 num_blocks = 1;
2140                                 k_chip->flash_support = FS_PROGRAM_LONGWORD;
2141                                 cpu_mhz = 100;
2142                                 break;
2143
2144                         case KINETIS_SDID_FAMILYID_K2X | KINETIS_SDID_SUBFAMID_KX2: {
2145                                 /* MK24FN1M reports as K22, this should detect it (according to errata note 1N83J) */
2146                                 uint32_t sopt1;
2147                                 result = target_read_u32(target, k_chip->sim_base + SIM_SOPT1_OFFSET, &sopt1);
2148                                 if (result != ERROR_OK)
2149                                         return result;
2150
2151                                 if (((k_chip->sim_sdid & (KINETIS_SDID_DIEID_MASK)) == KINETIS_SDID_DIEID_K24FN1M) &&
2152                                                 ((sopt1 & KINETIS_SOPT1_RAMSIZE_MASK) == KINETIS_SOPT1_RAMSIZE_K24FN1M)) {
2153                                         /* MK24FN1M */
2154                                         k_chip->pflash_sector_size = 4<<10;
2155                                         num_blocks = 2;
2156                                         k_chip->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR;
2157                                         k_chip->max_flash_prog_size = 1<<10;
2158                                         subfamid = 4; /* errata 1N83J fix */
2159                                         break;
2160                                 }
2161                                 if ((k_chip->sim_sdid & (KINETIS_SDID_DIEID_MASK)) == KINETIS_SDID_DIEID_K22FN128
2162                                         || (k_chip->sim_sdid & (KINETIS_SDID_DIEID_MASK)) == KINETIS_SDID_DIEID_K22FN256
2163                                         || (k_chip->sim_sdid & (KINETIS_SDID_DIEID_MASK)) == KINETIS_SDID_DIEID_K22FN512) {
2164                                         /* K22 with new-style SDID - smaller pflash with FTFA, 2kB sectors */
2165                                         k_chip->pflash_sector_size = 2<<10;
2166                                         /* autodetect 1 or 2 blocks */
2167                                         k_chip->flash_support = FS_PROGRAM_LONGWORD;
2168                                         break;
2169                                 }
2170                                 LOG_ERROR("Unsupported Kinetis K22 DIEID");
2171                                 break;
2172                         }
2173                         case KINETIS_SDID_FAMILYID_K2X | KINETIS_SDID_SUBFAMID_KX4:
2174                                 k_chip->pflash_sector_size = 4<<10;
2175                                 if ((k_chip->sim_sdid & (KINETIS_SDID_DIEID_MASK)) == KINETIS_SDID_DIEID_K24FN256) {
2176                                         /* K24FN256 - smaller pflash with FTFA */
2177                                         num_blocks = 1;
2178                                         k_chip->flash_support = FS_PROGRAM_LONGWORD;
2179                                         break;
2180                                 }
2181                                 /* K24FN1M without errata 7534 */
2182                                 num_blocks = 2;
2183                                 k_chip->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR;
2184                                 k_chip->max_flash_prog_size = 1<<10;
2185                                 break;
2186
2187                         case KINETIS_SDID_FAMILYID_K6X | KINETIS_SDID_SUBFAMID_KX1:     /* errata 7534 - should be K63 */
2188                         case KINETIS_SDID_FAMILYID_K6X | KINETIS_SDID_SUBFAMID_KX2:     /* errata 7534 - should be K64 */
2189                                 subfamid += 2; /* errata 7534 fix */
2190                                 /* fallthrough */
2191                         case KINETIS_SDID_FAMILYID_K6X | KINETIS_SDID_SUBFAMID_KX3:
2192                                 /* K63FN1M0 */
2193                         case KINETIS_SDID_FAMILYID_K6X | KINETIS_SDID_SUBFAMID_KX4:
2194                                 /* K64FN1M0, K64FX512 */
2195                                 k_chip->pflash_sector_size = 4<<10;
2196                                 k_chip->nvm_sector_size = 4<<10;
2197                                 k_chip->max_flash_prog_size = 1<<10;
2198                                 num_blocks = 2;
2199                                 k_chip->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR;
2200                                 break;
2201
2202                         case KINETIS_SDID_FAMILYID_K2X | KINETIS_SDID_SUBFAMID_KX6:
2203                                 /* K26FN2M0 */
2204                         case KINETIS_SDID_FAMILYID_K6X | KINETIS_SDID_SUBFAMID_KX6:
2205                                 /* K66FN2M0, K66FX1M0 */
2206                                 k_chip->pflash_sector_size = 4<<10;
2207                                 k_chip->nvm_sector_size = 4<<10;
2208                                 k_chip->max_flash_prog_size = 1<<10;
2209                                 num_blocks = 4;
2210                                 k_chip->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR | FS_ECC;
2211                                 cpu_mhz = 180;
2212                                 break;
2213
2214                         case KINETIS_SDID_FAMILYID_K2X | KINETIS_SDID_SUBFAMID_KX7:
2215                                 /* K27FN2M0 */
2216                         case KINETIS_SDID_FAMILYID_K2X | KINETIS_SDID_SUBFAMID_KX8:
2217                                 /* K28FN2M0 */
2218                                 k_chip->pflash_sector_size = 4<<10;
2219                                 k_chip->max_flash_prog_size = 1<<10;
2220                                 num_blocks = 4;
2221                                 k_chip->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR | FS_ECC;
2222                                 cpu_mhz = 150;
2223                                 break;
2224
2225                         case KINETIS_SDID_FAMILYID_K8X | KINETIS_SDID_SUBFAMID_KX0:
2226                         case KINETIS_SDID_FAMILYID_K8X | KINETIS_SDID_SUBFAMID_KX1:
2227                         case KINETIS_SDID_FAMILYID_K8X | KINETIS_SDID_SUBFAMID_KX2:
2228                                 /* K80FN256, K81FN256, K82FN256 */
2229                                 k_chip->pflash_sector_size = 4<<10;
2230                                 num_blocks = 1;
2231                                 k_chip->flash_support = FS_PROGRAM_LONGWORD | FS_NO_CMD_BLOCKSTAT;
2232                                 cpu_mhz = 150;
2233                                 break;
2234
2235                         case KINETIS_SDID_FAMILYID_KL8X | KINETIS_SDID_SUBFAMID_KX1:
2236                         case KINETIS_SDID_FAMILYID_KL8X | KINETIS_SDID_SUBFAMID_KX2:
2237                                 /* KL81Z128, KL82Z128 */
2238                                 k_chip->pflash_sector_size = 2<<10;
2239                                 num_blocks = 1;
2240                                 k_chip->flash_support = FS_PROGRAM_LONGWORD | FS_NO_CMD_BLOCKSTAT;
2241                                 k_chip->cache_type = KINETIS_CACHE_L;
2242
2243                                 use_nvm_marking = false;
2244                                 snprintf(name, sizeof(name), "MKL8%uZ%%s7",
2245                                          subfamid);
2246                                 break;
2247
2248                         default:
2249                                 LOG_ERROR("Unsupported Kinetis FAMILYID SUBFAMID");
2250                         }
2251
2252                         if (name[0] == '\0')
2253                                 snprintf(name, sizeof(name), "MK%u%uF%%s%u",
2254                                          familyid, subfamid, cpu_mhz / 10);
2255                         break;
2256
2257                 case KINETIS_SDID_SERIESID_KL:
2258                         /* KL-series */
2259                         k_chip->pflash_sector_size = 1<<10;
2260                         k_chip->nvm_sector_size = 1<<10;
2261                         /* autodetect 1 or 2 blocks */
2262                         k_chip->flash_support = FS_PROGRAM_LONGWORD;
2263                         k_chip->cache_type = KINETIS_CACHE_L;
2264                         k_chip->watchdog_type = KINETIS_WDOG_COP;
2265
2266                         cpu_mhz = 48;
2267                         switch (k_chip->sim_sdid & (KINETIS_SDID_FAMILYID_MASK | KINETIS_SDID_SUBFAMID_MASK)) {
2268                         case KINETIS_SDID_FAMILYID_K1X | KINETIS_SDID_SUBFAMID_KX3:
2269                         case KINETIS_SDID_FAMILYID_K2X | KINETIS_SDID_SUBFAMID_KX3:
2270                                 subfamid = 7;
2271                                 break;
2272
2273                         case KINETIS_SDID_FAMILYID_K2X | KINETIS_SDID_SUBFAMID_KX8:
2274                                 cpu_mhz = 72;
2275                                 k_chip->pflash_sector_size = 2<<10;
2276                                 num_blocks = 2;
2277                                 k_chip->watchdog_type = KINETIS_WDOG32_KL28;
2278                                 k_chip->sysmodectrlr_type = KINETIS_SMC32;
2279                                 break;
2280                         }
2281
2282                         snprintf(name, sizeof(name), "MKL%u%uZ%%s%u",
2283                                  familyid, subfamid, cpu_mhz / 10);
2284                         break;
2285
2286                 case KINETIS_SDID_SERIESID_KW:
2287                         /* Newer KW-series (all KW series except KW2xD, KW01Z) */
2288                         cpu_mhz = 48;
2289                         switch (k_chip->sim_sdid & (KINETIS_SDID_FAMILYID_MASK | KINETIS_SDID_SUBFAMID_MASK)) {
2290                         case KINETIS_SDID_FAMILYID_K4X | KINETIS_SDID_SUBFAMID_KX0:
2291                                 /* KW40Z */
2292                         case KINETIS_SDID_FAMILYID_K3X | KINETIS_SDID_SUBFAMID_KX0:
2293                                 /* KW30Z */
2294                         case KINETIS_SDID_FAMILYID_K2X | KINETIS_SDID_SUBFAMID_KX0:
2295                                 /* KW20Z */
2296                                 /* FTFA, 1kB sectors */
2297                                 k_chip->pflash_sector_size = 1<<10;
2298                                 k_chip->nvm_sector_size = 1<<10;
2299                                 /* autodetect 1 or 2 blocks */
2300                                 k_chip->flash_support = FS_PROGRAM_LONGWORD;
2301                                 k_chip->cache_type = KINETIS_CACHE_L;
2302                                 k_chip->watchdog_type = KINETIS_WDOG_COP;
2303                                 break;
2304                         case KINETIS_SDID_FAMILYID_K4X | KINETIS_SDID_SUBFAMID_KX1:
2305                                 /* KW41Z */
2306                         case KINETIS_SDID_FAMILYID_K3X | KINETIS_SDID_SUBFAMID_KX1:
2307                                 /* KW31Z */
2308                         case KINETIS_SDID_FAMILYID_K2X | KINETIS_SDID_SUBFAMID_KX1:
2309                                 /* KW21Z */
2310                                 /* FTFA, 2kB sectors */
2311                                 k_chip->pflash_sector_size = 2<<10;
2312                                 k_chip->nvm_sector_size = 2<<10;
2313                                 /* autodetect 1 or 2 blocks */
2314                                 k_chip->flash_support = FS_PROGRAM_LONGWORD;
2315                                 k_chip->cache_type = KINETIS_CACHE_L;
2316                                 k_chip->watchdog_type = KINETIS_WDOG_COP;
2317                                 break;
2318                         default:
2319                                 LOG_ERROR("Unsupported KW FAMILYID SUBFAMID");
2320                         }
2321                         snprintf(name, sizeof(name), "MKW%u%uZ%%s%u",
2322                                          familyid, subfamid, cpu_mhz / 10);
2323                         break;
2324
2325                 case KINETIS_SDID_SERIESID_KV:
2326                         /* KV-series */
2327                         k_chip->watchdog_type = KINETIS_WDOG_K;
2328                         switch (k_chip->sim_sdid & (KINETIS_SDID_FAMILYID_MASK | KINETIS_SDID_SUBFAMID_MASK)) {
2329                         case KINETIS_SDID_FAMILYID_K1X | KINETIS_SDID_SUBFAMID_KX0:
2330                                 /* KV10: FTFA, 1kB sectors */
2331                                 k_chip->pflash_sector_size = 1<<10;
2332                                 num_blocks = 1;
2333                                 k_chip->flash_support = FS_PROGRAM_LONGWORD;
2334                                 k_chip->cache_type = KINETIS_CACHE_L;
2335                                 strcpy(name, "MKV10Z%s7");
2336                                 break;
2337
2338                         case KINETIS_SDID_FAMILYID_K1X | KINETIS_SDID_SUBFAMID_KX1:
2339                                 /* KV11: FTFA, 2kB sectors */
2340                                 k_chip->pflash_sector_size = 2<<10;
2341                                 num_blocks = 1;
2342                                 k_chip->flash_support = FS_PROGRAM_LONGWORD;
2343                                 k_chip->cache_type = KINETIS_CACHE_L;
2344                                 strcpy(name, "MKV11Z%s7");
2345                                 break;
2346
2347                         case KINETIS_SDID_FAMILYID_K3X | KINETIS_SDID_SUBFAMID_KX0:
2348                                 /* KV30: FTFA, 2kB sectors, 1 block */
2349                         case KINETIS_SDID_FAMILYID_K3X | KINETIS_SDID_SUBFAMID_KX1:
2350                                 /* KV31: FTFA, 2kB sectors, 2 blocks */
2351                                 k_chip->pflash_sector_size = 2<<10;
2352                                 /* autodetect 1 or 2 blocks */
2353                                 k_chip->flash_support = FS_PROGRAM_LONGWORD;
2354                                 k_chip->cache_type = KINETIS_CACHE_K;
2355                                 break;
2356
2357                         case KINETIS_SDID_FAMILYID_K4X | KINETIS_SDID_SUBFAMID_KX2:
2358                         case KINETIS_SDID_FAMILYID_K4X | KINETIS_SDID_SUBFAMID_KX4:
2359                         case KINETIS_SDID_FAMILYID_K4X | KINETIS_SDID_SUBFAMID_KX6:
2360                                 /* KV4x: FTFA, 4kB sectors */
2361                                 k_chip->pflash_sector_size = 4<<10;
2362                                 num_blocks = 1;
2363                                 k_chip->flash_support = FS_PROGRAM_LONGWORD;
2364                                 k_chip->cache_type = KINETIS_CACHE_K;
2365                                 cpu_mhz = 168;
2366                                 break;
2367
2368                         case KINETIS_SDID_FAMILYID_K5X | KINETIS_SDID_SUBFAMID_KX6:
2369                         case KINETIS_SDID_FAMILYID_K5X | KINETIS_SDID_SUBFAMID_KX8:
2370                                 /* KV5x: FTFE, 8kB sectors */
2371                                 k_chip->pflash_sector_size = 8<<10;
2372                                 k_chip->max_flash_prog_size = 1<<10;
2373                                 num_blocks = 1;
2374                                 maxaddr_shift = 14;
2375                                 k_chip->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR | FS_WIDTH_256BIT | FS_ECC;
2376                                 k_chip->pflash_base = 0x10000000;
2377                                 k_chip->progr_accel_ram = 0x18000000;
2378                                 cpu_mhz = 240;
2379                                 break;
2380
2381                         default:
2382                                 LOG_ERROR("Unsupported KV FAMILYID SUBFAMID");
2383                         }
2384
2385                         if (name[0] == '\0')
2386                                 snprintf(name, sizeof(name), "MKV%u%uF%%s%u",
2387                                          familyid, subfamid, cpu_mhz / 10);
2388                         break;
2389
2390                 case KINETIS_SDID_SERIESID_KE:
2391                         /* KE1x-series */
2392                         k_chip->watchdog_type = KINETIS_WDOG32_KE1X;
2393                         switch (k_chip->sim_sdid &
2394                                 (KINETIS_SDID_FAMILYID_MASK | KINETIS_SDID_SUBFAMID_MASK | KINETIS_SDID_PROJECTID_MASK)) {
2395                         case KINETIS_SDID_FAMILYID_K1X | KINETIS_SDID_SUBFAMID_KX4 | KINETIS_SDID_PROJECTID_KE1xZ:
2396                         case KINETIS_SDID_FAMILYID_K1X | KINETIS_SDID_SUBFAMID_KX5 | KINETIS_SDID_PROJECTID_KE1xZ:
2397                                 /* KE1xZ: FTFE, 2kB sectors */
2398                                 k_chip->pflash_sector_size = 2<<10;
2399                                 k_chip->nvm_sector_size = 2<<10;
2400                                 k_chip->max_flash_prog_size = 1<<9;
2401                                 num_blocks = 2;
2402                                 k_chip->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR;
2403                                 k_chip->cache_type = KINETIS_CACHE_L;
2404
2405                                 cpu_mhz = 72;
2406                                 snprintf(name, sizeof(name), "MKE%u%uZ%%s%u",
2407                                          familyid, subfamid, cpu_mhz / 10);
2408                                 break;
2409
2410                         case KINETIS_SDID_FAMILYID_K1X | KINETIS_SDID_SUBFAMID_KX4 | KINETIS_SDID_PROJECTID_KE1xF:
2411                         case KINETIS_SDID_FAMILYID_K1X | KINETIS_SDID_SUBFAMID_KX6 | KINETIS_SDID_PROJECTID_KE1xF:
2412                         case KINETIS_SDID_FAMILYID_K1X | KINETIS_SDID_SUBFAMID_KX8 | KINETIS_SDID_PROJECTID_KE1xF:
2413                                 /* KE1xF: FTFE, 4kB sectors */
2414                                 k_chip->pflash_sector_size = 4<<10;
2415                                 k_chip->nvm_sector_size = 2<<10;
2416                                 k_chip->max_flash_prog_size = 1<<10;
2417                                 num_blocks = 2;
2418                                 k_chip->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR;
2419                                 k_chip->cache_type = KINETIS_CACHE_MSCM;
2420
2421                                 cpu_mhz = 168;
2422                                 snprintf(name, sizeof(name), "MKE%u%uF%%s%u",
2423                                          familyid, subfamid, cpu_mhz / 10);
2424                                 break;
2425
2426                         default:
2427                                 LOG_ERROR("Unsupported KE FAMILYID SUBFAMID");
2428                         }
2429                         break;
2430
2431                 default:
2432                         LOG_ERROR("Unsupported K-series");
2433                 }
2434         }
2435
2436         if (k_chip->pflash_sector_size == 0) {
2437                 LOG_ERROR("MCU is unsupported, SDID 0x%08" PRIx32, k_chip->sim_sdid);
2438                 return ERROR_FLASH_OPER_UNSUPPORTED;
2439         }
2440
2441         result = target_read_u32(target, k_chip->sim_base + SIM_FCFG1_OFFSET, &k_chip->sim_fcfg1);
2442         if (result != ERROR_OK)
2443                 return result;
2444
2445         result = target_read_u32(target, k_chip->sim_base + SIM_FCFG2_OFFSET, &k_chip->sim_fcfg2);
2446         if (result != ERROR_OK)
2447                 return result;
2448
2449         LOG_DEBUG("SDID: 0x%08" PRIX32 " FCFG1: 0x%08" PRIX32 " FCFG2: 0x%08" PRIX32, k_chip->sim_sdid,
2450                         k_chip->sim_fcfg1, k_chip->sim_fcfg2);
2451
2452         fcfg1_nvmsize = (uint8_t)((k_chip->sim_fcfg1 >> 28) & 0x0f);
2453         fcfg1_pfsize = (uint8_t)((k_chip->sim_fcfg1 >> 24) & 0x0f);
2454         fcfg1_eesize = (uint8_t)((k_chip->sim_fcfg1 >> 16) & 0x0f);
2455         fcfg1_depart = (uint8_t)((k_chip->sim_fcfg1 >> 8) & 0x0f);
2456
2457         fcfg2_pflsh = (uint8_t)((k_chip->sim_fcfg2 >> 23) & 0x01);
2458         k_chip->fcfg2_maxaddr0_shifted = ((k_chip->sim_fcfg2 >> 24) & 0x7f) << maxaddr_shift;
2459         k_chip->fcfg2_maxaddr1_shifted = ((k_chip->sim_fcfg2 >> 16) & 0x7f) << maxaddr_shift;
2460
2461         if (num_blocks == 0)
2462                 num_blocks = k_chip->fcfg2_maxaddr1_shifted ? 2 : 1;
2463         else if (k_chip->fcfg2_maxaddr1_shifted == 0 && num_blocks >= 2 && fcfg2_pflsh) {
2464                 /* fcfg2_maxaddr1 may be zero due to partitioning whole NVM as EEPROM backup
2465                  * Do not adjust block count in this case! */
2466                 num_blocks = 1;
2467                 LOG_WARNING("MAXADDR1 is zero, number of flash banks adjusted to 1");
2468         } else if (k_chip->fcfg2_maxaddr1_shifted != 0 && num_blocks == 1) {
2469                 num_blocks = 2;
2470                 LOG_WARNING("MAXADDR1 is non zero, number of flash banks adjusted to 2");
2471         }
2472
2473         /* when the PFLSH bit is set, there is no FlexNVM/FlexRAM */
2474         if (!fcfg2_pflsh) {
2475                 switch (fcfg1_nvmsize) {
2476                 case 0x03:
2477                 case 0x05:
2478                 case 0x07:
2479                 case 0x09:
2480                 case 0x0b:
2481                         k_chip->nvm_size = 1 << (14 + (fcfg1_nvmsize >> 1));
2482                         break;
2483                 case 0x0f:
2484                         if (k_chip->pflash_sector_size >= 4<<10)
2485                                 k_chip->nvm_size = 512<<10;
2486                         else
2487                                 /* K20_100 */
2488                                 k_chip->nvm_size = 256<<10;
2489                         break;
2490                 default:
2491                         k_chip->nvm_size = 0;
2492                         break;
2493                 }
2494
2495                 switch (fcfg1_eesize) {
2496                 case 0x00:
2497                 case 0x01:
2498                 case 0x02:
2499                 case 0x03:
2500                 case 0x04:
2501                 case 0x05:
2502                 case 0x06:
2503                 case 0x07:
2504                 case 0x08:
2505                 case 0x09:
2506                         ee_size = (16 << (10 - fcfg1_eesize));
2507                         break;
2508                 default:
2509                         ee_size = 0;
2510                         break;
2511                 }
2512
2513                 switch (fcfg1_depart) {
2514                 case 0x01:
2515                 case 0x02:
2516                 case 0x03:
2517                 case 0x04:
2518                 case 0x05:
2519                 case 0x06:
2520                         k_chip->dflash_size = k_chip->nvm_size - (4096 << fcfg1_depart);
2521                         break;
2522                 case 0x07:
2523                 case 0x08:
2524                         k_chip->dflash_size = 0;
2525                         break;
2526                 case 0x09:
2527                 case 0x0a:
2528                 case 0x0b:
2529                 case 0x0c:
2530                 case 0x0d:
2531                         k_chip->dflash_size = 4096 << (fcfg1_depart & 0x7);
2532                         break;
2533                 default:
2534                         k_chip->dflash_size = k_chip->nvm_size;
2535                         break;
2536                 }
2537         }
2538
2539         switch (fcfg1_pfsize) {
2540         case 0x00:
2541                 k_chip->pflash_size = 8192;
2542                 break;
2543         case 0x01:
2544         case 0x03:
2545         case 0x05:
2546         case 0x07:
2547         case 0x09:
2548         case 0x0b:
2549         case 0x0d:
2550                 k_chip->pflash_size = 1 << (14 + (fcfg1_pfsize >> 1));
2551                 break;
2552         case 0x0f:
2553                 /* a peculiar case: Freescale states different sizes for 0xf
2554                  * KL03P24M48SF0RM      32 KB .... duplicate of code 0x3
2555                  * K02P64M100SFARM      128 KB ... duplicate of code 0x7
2556                  * K22P121M120SF8RM     256 KB ... duplicate of code 0x9
2557                  * K22P121M120SF7RM     512 KB ... duplicate of code 0xb
2558                  * K22P100M120SF5RM     1024 KB ... duplicate of code 0xd
2559                  * K26P169M180SF5RM     2048 KB ... the only unique value
2560                  * fcfg2_maxaddr0 seems to be the only clue to pflash_size
2561                  * Checking fcfg2_maxaddr0 in bank probe is pointless then
2562                  */
2563                 if (fcfg2_pflsh)
2564                         k_chip->pflash_size = k_chip->fcfg2_maxaddr0_shifted * num_blocks;
2565                 else
2566                         k_chip->pflash_size = k_chip->fcfg2_maxaddr0_shifted * num_blocks / 2;
2567                 if (k_chip->pflash_size != 2048<<10)
2568                         LOG_WARNING("SIM_FCFG1 PFSIZE = 0xf: please check if pflash is %u KB", k_chip->pflash_size>>10);
2569
2570                 break;
2571         default:
2572                 k_chip->pflash_size = 0;
2573                 break;
2574         }
2575
2576         if (k_chip->flash_support & FS_PROGRAM_SECTOR && k_chip->max_flash_prog_size == 0) {
2577                 k_chip->max_flash_prog_size = k_chip->pflash_sector_size;
2578                 /* Program section size is equal to sector size by default */
2579         }
2580
2581         if (fcfg2_pflsh) {
2582                 k_chip->num_pflash_blocks = num_blocks;
2583                 k_chip->num_nvm_blocks = 0;
2584         } else {
2585                 k_chip->num_pflash_blocks = (num_blocks + 1) / 2;
2586                 k_chip->num_nvm_blocks = num_blocks - k_chip->num_pflash_blocks;
2587         }
2588
2589         if (use_nvm_marking) {
2590                 nvm_marking[0] = k_chip->num_nvm_blocks ? 'X' : 'N';
2591                 nvm_marking[1] = '\0';
2592         } else
2593                 nvm_marking[0] = '\0';
2594
2595         pflash_size_k = k_chip->pflash_size / 1024;
2596         pflash_size_m = pflash_size_k / 1024;
2597         if (pflash_size_m)
2598                 snprintf(flash_marking, sizeof(flash_marking), "%s%" PRIu32 "M0xxx", nvm_marking, pflash_size_m);
2599         else
2600                 snprintf(flash_marking, sizeof(flash_marking), "%s%" PRIu32 "xxx", nvm_marking, pflash_size_k);
2601
2602         snprintf(k_chip->name, sizeof(k_chip->name), name, flash_marking);
2603         LOG_INFO("Kinetis %s detected: %u flash blocks", k_chip->name, num_blocks);
2604         LOG_INFO("%u PFlash banks: %" PRIu32 "k total", k_chip->num_pflash_blocks, pflash_size_k);
2605         if (k_chip->num_nvm_blocks) {
2606                 nvm_size_k = k_chip->nvm_size / 1024;
2607                 dflash_size_k = k_chip->dflash_size / 1024;
2608                 LOG_INFO("%u FlexNVM banks: %" PRIu32 "k total, %" PRIu32 "k available as data flash, %" PRIu32 "bytes FlexRAM",
2609                          k_chip->num_nvm_blocks, nvm_size_k, dflash_size_k, ee_size);
2610         }
2611
2612         k_chip->probed = true;
2613
2614         if (create_banks)
2615                 kinetis_create_missing_banks(k_chip);
2616
2617         return ERROR_OK;
2618 }
2619
2620 static int kinetis_probe(struct flash_bank *bank)
2621 {
2622         int result;
2623         uint8_t fcfg2_maxaddr0, fcfg2_pflsh, fcfg2_maxaddr1;
2624         unsigned num_blocks, first_nvm_bank;
2625         uint32_t size_k;
2626         struct kinetis_flash_bank *k_bank = bank->driver_priv;
2627         struct kinetis_chip *k_chip;
2628
2629         assert(k_bank);
2630         k_chip = k_bank->k_chip;
2631
2632         k_bank->probed = false;
2633
2634         if (!k_chip->probed) {
2635                 result = kinetis_probe_chip(k_chip);
2636                 if (result != ERROR_OK)
2637                         return result;
2638         }
2639
2640         num_blocks = k_chip->num_pflash_blocks + k_chip->num_nvm_blocks;
2641         first_nvm_bank = k_chip->num_pflash_blocks;
2642
2643         if (k_bank->bank_number < k_chip->num_pflash_blocks) {
2644                 /* pflash, banks start at address zero */
2645                 k_bank->flash_class = FC_PFLASH;
2646                 bank->size = (k_chip->pflash_size / k_chip->num_pflash_blocks);
2647                 bank->base = k_chip->pflash_base + bank->size * k_bank->bank_number;
2648                 k_bank->prog_base = 0x00000000 + bank->size * k_bank->bank_number;
2649                 k_bank->sector_size = k_chip->pflash_sector_size;
2650                 /* pflash is divided into 32 protection areas for
2651                  * parts with more than 32K of PFlash. For parts with
2652                  * less the protection unit is set to 1024 bytes */
2653                 k_bank->protection_size = MAX(k_chip->pflash_size / 32, 1024);
2654                 bank->num_prot_blocks = bank->size / k_bank->protection_size;
2655                 k_bank->protection_block = bank->num_prot_blocks * k_bank->bank_number;
2656
2657                 size_k = bank->size / 1024;
2658                 LOG_DEBUG("Kinetis bank %u: %" PRIu32 "k PFlash, FTFx base 0x%08" PRIx32 ", sect %u",
2659                          k_bank->bank_number, size_k, k_bank->prog_base, k_bank->sector_size);
2660
2661         } else if (k_bank->bank_number < num_blocks) {
2662                 /* nvm, banks start at address 0x10000000 */
2663                 unsigned nvm_ord = k_bank->bank_number - first_nvm_bank;
2664                 uint32_t limit;
2665
2666                 k_bank->flash_class = FC_FLEX_NVM;
2667                 bank->size = k_chip->nvm_size / k_chip->num_nvm_blocks;
2668                 bank->base = k_chip->nvm_base + bank->size * nvm_ord;
2669                 k_bank->prog_base = 0x00800000 + bank->size * nvm_ord;
2670                 k_bank->sector_size = k_chip->nvm_sector_size;
2671                 if (k_chip->dflash_size == 0) {
2672                         k_bank->protection_size = 0;
2673                 } else {
2674                         int i;
2675                         for (i = k_chip->dflash_size; ~i & 1; i >>= 1)
2676                                 ;
2677                         if (i == 1)
2678                                 k_bank->protection_size = k_chip->dflash_size / 8;      /* data flash size = 2^^n */
2679                         else
2680                                 k_bank->protection_size = k_chip->nvm_size / 8; /* TODO: verify on SF1, not documented in RM */
2681                 }
2682                 bank->num_prot_blocks = 8 / k_chip->num_nvm_blocks;
2683                 k_bank->protection_block = bank->num_prot_blocks * nvm_ord;
2684
2685                 /* EEPROM backup part of FlexNVM is not accessible, use dflash_size as a limit */
2686                 if (k_chip->dflash_size > bank->size * nvm_ord)
2687                         limit = k_chip->dflash_size - bank->size * nvm_ord;
2688                 else
2689                         limit = 0;
2690
2691                 if (bank->size > limit) {
2692                         bank->size = limit;
2693                         LOG_DEBUG("FlexNVM bank %u limited to 0x%08" PRIx32 " due to active EEPROM backup",
2694                                 k_bank->bank_number, limit);
2695                 }
2696
2697                 size_k = bank->size / 1024;
2698                 LOG_DEBUG("Kinetis bank %u: %" PRIu32 "k FlexNVM, FTFx base 0x%08" PRIx32 ", sect %u",
2699                          k_bank->bank_number, size_k, k_bank->prog_base, k_bank->sector_size);
2700
2701         } else {
2702                 LOG_ERROR("Cannot determine parameters for bank %u, only %u banks on device",
2703                                 k_bank->bank_number, num_blocks);
2704                 return ERROR_FLASH_BANK_INVALID;
2705         }
2706
2707         fcfg2_pflsh = (uint8_t)((k_chip->sim_fcfg2 >> 23) & 0x01);
2708         fcfg2_maxaddr0 = (uint8_t)((k_chip->sim_fcfg2 >> 24) & 0x7f);
2709         fcfg2_maxaddr1 = (uint8_t)((k_chip->sim_fcfg2 >> 16) & 0x7f);
2710
2711         if (k_bank->bank_number == 0 && k_chip->fcfg2_maxaddr0_shifted != bank->size)
2712                 LOG_WARNING("MAXADDR0 0x%02" PRIx8 " check failed,"
2713                                 " please report to OpenOCD mailing list", fcfg2_maxaddr0);
2714
2715         if (fcfg2_pflsh) {
2716                 if (k_bank->bank_number == 1 && k_chip->fcfg2_maxaddr1_shifted != bank->size)
2717                         LOG_WARNING("MAXADDR1 0x%02" PRIx8 " check failed,"
2718                                 " please report to OpenOCD mailing list", fcfg2_maxaddr1);
2719         } else {
2720                 if (k_bank->bank_number == first_nvm_bank
2721                                 && k_chip->fcfg2_maxaddr1_shifted != k_chip->dflash_size)
2722                         LOG_WARNING("FlexNVM MAXADDR1 0x%02" PRIx8 " check failed,"
2723                                 " please report to OpenOCD mailing list", fcfg2_maxaddr1);
2724         }
2725
2726         if (bank->sectors) {
2727                 free(bank->sectors);
2728                 bank->sectors = NULL;
2729         }
2730         if (bank->prot_blocks) {
2731                 free(bank->prot_blocks);
2732                 bank->prot_blocks = NULL;
2733         }
2734
2735         if (k_bank->sector_size == 0) {
2736                 LOG_ERROR("Unknown sector size for bank %u", bank->bank_number);
2737                 return ERROR_FLASH_BANK_INVALID;
2738         }
2739
2740         bank->num_sectors = bank->size / k_bank->sector_size;
2741
2742         if (bank->num_sectors > 0) {
2743                 /* FlexNVM bank can be used for EEPROM backup therefore zero sized */
2744                 bank->sectors = alloc_block_array(0, k_bank->sector_size, bank->num_sectors);
2745                 if (!bank->sectors)
2746                         return ERROR_FAIL;
2747
2748                 bank->prot_blocks = alloc_block_array(0, k_bank->protection_size, bank->num_prot_blocks);
2749                 if (!bank->prot_blocks)
2750                         return ERROR_FAIL;
2751
2752         } else {
2753                 bank->num_prot_blocks = 0;
2754         }
2755
2756         k_bank->probed = true;
2757
2758         return ERROR_OK;
2759 }
2760
2761 static int kinetis_auto_probe(struct flash_bank *bank)
2762 {
2763         struct kinetis_flash_bank *k_bank = bank->driver_priv;
2764
2765         if (k_bank && k_bank->probed)
2766                 return ERROR_OK;
2767
2768         return kinetis_probe(bank);
2769 }
2770
2771 static int kinetis_info(struct flash_bank *bank, char *buf, int buf_size)
2772 {
2773         const char *bank_class_names[] = {
2774                 "(ANY)", "PFlash", "FlexNVM", "FlexRAM"
2775         };
2776
2777         struct kinetis_flash_bank *k_bank = bank->driver_priv;
2778         struct kinetis_chip *k_chip = k_bank->k_chip;
2779         uint32_t size_k = bank->size / 1024;
2780
2781         snprintf(buf, buf_size,
2782                 "%s %s: %" PRIu32 "k %s bank %s at " TARGET_ADDR_FMT,
2783                 bank->driver->name, k_chip->name,
2784                 size_k, bank_class_names[k_bank->flash_class],
2785                 bank->name, bank->base);
2786
2787         return ERROR_OK;
2788 }
2789
2790 static int kinetis_blank_check(struct flash_bank *bank)
2791 {
2792         struct kinetis_flash_bank *k_bank = bank->driver_priv;
2793         struct kinetis_chip *k_chip = k_bank->k_chip;
2794         int result;
2795
2796         /* suprisingly blank check does not work in VLPR and HSRUN modes */
2797         result = kinetis_check_run_mode(k_chip);
2798         if (result != ERROR_OK)
2799                 return result;
2800
2801         /* reset error flags */
2802         result = kinetis_ftfx_prepare(bank->target);
2803         if (result != ERROR_OK)
2804                 return result;
2805
2806         if (k_bank->flash_class == FC_PFLASH || k_bank->flash_class == FC_FLEX_NVM) {
2807                 bool block_dirty = true;
2808                 bool use_block_cmd = !(k_chip->flash_support & FS_NO_CMD_BLOCKSTAT);
2809                 uint8_t ftfx_fstat;
2810
2811                 if (use_block_cmd && k_bank->flash_class == FC_FLEX_NVM) {
2812                         uint8_t fcfg1_depart = (uint8_t)((k_chip->sim_fcfg1 >> 8) & 0x0f);
2813                         /* block operation cannot be used on FlexNVM when EEPROM backup partition is set */
2814                         if (fcfg1_depart != 0xf && fcfg1_depart != 0)
2815                                 use_block_cmd = false;
2816                 }
2817
2818                 if (use_block_cmd) {
2819                         /* check if whole bank is blank */
2820                         result = kinetis_ftfx_command(bank->target, FTFx_CMD_BLOCKSTAT, k_bank->prog_base,
2821                                                          0, 0, 0, 0,  0, 0, 0, 0, &ftfx_fstat);
2822
2823                         if (result != ERROR_OK)
2824                                 kinetis_ftfx_clear_error(bank->target);
2825                         else if ((ftfx_fstat & 0x01) == 0)
2826                                 block_dirty = false;
2827                 }
2828
2829                 if (block_dirty) {
2830                         /* the whole bank is not erased, check sector-by-sector */
2831                         for (unsigned int i = 0; i < bank->num_sectors; i++) {
2832                                 /* normal margin */
2833                                 result = kinetis_ftfx_command(bank->target, FTFx_CMD_SECTSTAT,
2834                                                 k_bank->prog_base + bank->sectors[i].offset,
2835                                                 1, 0, 0, 0,  0, 0, 0, 0, &ftfx_fstat);
2836
2837                                 if (result == ERROR_OK) {
2838                                         bank->sectors[i].is_erased = !(ftfx_fstat & 0x01);
2839                                 } else {
2840                                         LOG_DEBUG("Ignoring errored PFlash sector blank-check");
2841                                         kinetis_ftfx_clear_error(bank->target);
2842                                         bank->sectors[i].is_erased = -1;
2843                                 }
2844                         }
2845                 } else {
2846                         /* the whole bank is erased, update all sectors */
2847                         for (unsigned int i = 0; i < bank->num_sectors; i++)
2848                                 bank->sectors[i].is_erased = 1;
2849                 }
2850         } else {
2851                 LOG_WARNING("kinetis_blank_check not supported yet for FlexRAM");
2852                 return ERROR_FLASH_OPERATION_FAILED;
2853         }
2854
2855         return ERROR_OK;
2856 }
2857
2858
2859 COMMAND_HANDLER(kinetis_nvm_partition)
2860 {
2861         int result;
2862         unsigned bank_idx;
2863         unsigned num_blocks, first_nvm_bank;
2864         unsigned long par, log2 = 0, ee1 = 0, ee2 = 0;
2865         enum { SHOW_INFO, DF_SIZE, EEBKP_SIZE } sz_type = SHOW_INFO;
2866         bool enable;
2867         uint8_t load_flex_ram = 1;
2868         uint8_t ee_size_code = 0x3f;
2869         uint8_t flex_nvm_partition_code = 0;
2870         uint8_t ee_split = 3;
2871         struct target *target = get_current_target(CMD_CTX);
2872         struct kinetis_chip *k_chip;
2873         uint32_t sim_fcfg1;
2874
2875         k_chip = kinetis_get_chip(target);
2876
2877         if (CMD_ARGC >= 2) {
2878                 if (strcmp(CMD_ARGV[0], "dataflash") == 0)
2879                         sz_type = DF_SIZE;
2880                 else if (strcmp(CMD_ARGV[0], "eebkp") == 0)
2881                         sz_type = EEBKP_SIZE;
2882
2883                 par = strtoul(CMD_ARGV[1], NULL, 10);
2884                 while (par >> (log2 + 3))
2885                         log2++;
2886         }
2887         switch (sz_type) {
2888         case SHOW_INFO:
2889                 if (k_chip == NULL) {
2890                         LOG_ERROR("Chip not probed.");
2891                         return ERROR_FAIL;
2892                 }
2893                 result = target_read_u32(target, k_chip->sim_base + SIM_FCFG1_OFFSET, &sim_fcfg1);
2894                 if (result != ERROR_OK)
2895                         return result;
2896
2897                 flex_nvm_partition_code = (uint8_t)((sim_fcfg1 >> 8) & 0x0f);
2898                 switch (flex_nvm_partition_code) {
2899                 case 0:
2900                         command_print(CMD, "No EEPROM backup, data flash only");
2901                         break;
2902                 case 1:
2903                 case 2:
2904                 case 3:
2905                 case 4:
2906                 case 5:
2907                 case 6:
2908                         command_print(CMD, "EEPROM backup %d KB", 4 << flex_nvm_partition_code);
2909                         break;
2910                 case 8:
2911                         command_print(CMD, "No data flash, EEPROM backup only");
2912                         break;
2913                 case 0x9:
2914                 case 0xA:
2915                 case 0xB:
2916                 case 0xC:
2917                 case 0xD:
2918                 case 0xE:
2919                         command_print(CMD, "data flash %d KB", 4 << (flex_nvm_partition_code & 7));
2920                         break;
2921                 case 0xf:
2922                         command_print(CMD, "No EEPROM backup, data flash only (DEPART not set)");
2923                         break;
2924                 default:
2925                         command_print(CMD, "Unsupported EEPROM backup size code 0x%02" PRIx8, flex_nvm_partition_code);
2926                 }
2927                 return ERROR_OK;
2928
2929         case DF_SIZE:
2930                 flex_nvm_partition_code = 0x8 | log2;
2931                 break;
2932
2933         case EEBKP_SIZE:
2934                 flex_nvm_partition_code = log2;
2935                 break;
2936         }
2937
2938         if (CMD_ARGC == 3)
2939                 ee1 = ee2 = strtoul(CMD_ARGV[2], NULL, 10) / 2;
2940         else if (CMD_ARGC >= 4) {
2941                 ee1 = strtoul(CMD_ARGV[2], NULL, 10);
2942                 ee2 = strtoul(CMD_ARGV[3], NULL, 10);
2943         }
2944
2945         enable = ee1 + ee2 > 0;
2946         if (enable) {
2947                 for (log2 = 2; ; log2++) {
2948                         if (ee1 + ee2 == (16u << 10) >> log2)
2949                                 break;
2950                         if (ee1 + ee2 > (16u << 10) >> log2 || log2 >= 9) {
2951                                 LOG_ERROR("Unsupported EEPROM size");
2952                                 return ERROR_FLASH_OPERATION_FAILED;
2953                         }
2954                 }
2955
2956                 if (ee1 * 3 == ee2)
2957                         ee_split = 1;
2958                 else if (ee1 * 7 == ee2)
2959                         ee_split = 0;
2960                 else if (ee1 != ee2) {
2961                         LOG_ERROR("Unsupported EEPROM sizes ratio");
2962                         return ERROR_FLASH_OPERATION_FAILED;
2963                 }
2964
2965                 ee_size_code = log2 | ee_split << 4;
2966         }
2967
2968         if (CMD_ARGC >= 5)
2969                 COMMAND_PARSE_ON_OFF(CMD_ARGV[4], enable);
2970         if (enable)
2971                 load_flex_ram = 0;
2972
2973         LOG_INFO("DEPART 0x%" PRIx8 ", EEPROM size code 0x%" PRIx8,
2974                  flex_nvm_partition_code, ee_size_code);
2975
2976         result = kinetis_check_run_mode(k_chip);
2977         if (result != ERROR_OK)
2978                 return result;
2979
2980         /* reset error flags */
2981         result = kinetis_ftfx_prepare(target);
2982         if (result != ERROR_OK)
2983                 return result;
2984
2985         result = kinetis_ftfx_command(target, FTFx_CMD_PGMPART, load_flex_ram,
2986                                       ee_size_code, flex_nvm_partition_code, 0, 0,
2987                                       0, 0, 0, 0,  NULL);
2988         if (result != ERROR_OK)
2989                 return result;
2990
2991         command_print(CMD, "FlexNVM partition set. Please reset MCU.");
2992
2993         if (k_chip) {
2994                 first_nvm_bank = k_chip->num_pflash_blocks;
2995                 num_blocks = k_chip->num_pflash_blocks + k_chip->num_nvm_blocks;
2996                 for (bank_idx = first_nvm_bank; bank_idx < num_blocks; bank_idx++)
2997                         k_chip->banks[bank_idx].probed = false; /* re-probe before next use */
2998                 k_chip->probed = false;
2999         }
3000
3001         command_print(CMD, "FlexNVM banks will be re-probed to set new data flash size.");
3002         return ERROR_OK;
3003 }
3004
3005 COMMAND_HANDLER(kinetis_fcf_source_handler)
3006 {
3007         if (CMD_ARGC > 1)
3008                 return ERROR_COMMAND_SYNTAX_ERROR;
3009
3010         if (CMD_ARGC == 1) {
3011                 if (strcmp(CMD_ARGV[0], "write") == 0)
3012                         allow_fcf_writes = true;
3013                 else if (strcmp(CMD_ARGV[0], "protection") == 0)
3014                         allow_fcf_writes = false;
3015                 else
3016                         return ERROR_COMMAND_SYNTAX_ERROR;
3017         }
3018
3019         if (allow_fcf_writes) {
3020                 command_print(CMD, "Arbitrary Flash Configuration Field writes enabled.");
3021                 command_print(CMD, "Protection info writes to FCF disabled.");
3022                 LOG_WARNING("BEWARE: incorrect flash configuration may permanently lock the device.");
3023         } else {
3024                 command_print(CMD, "Protection info writes to Flash Configuration Field enabled.");
3025                 command_print(CMD, "Arbitrary FCF writes disabled. Mode safe from unwanted locking of the device.");
3026         }
3027
3028         return ERROR_OK;
3029 }
3030
3031 COMMAND_HANDLER(kinetis_fopt_handler)
3032 {
3033         if (CMD_ARGC > 1)
3034                 return ERROR_COMMAND_SYNTAX_ERROR;
3035
3036         if (CMD_ARGC == 1) {
3037                 fcf_fopt = (uint8_t)strtoul(CMD_ARGV[0], NULL, 0);
3038                 fcf_fopt_configured = true;
3039         } else {
3040                 command_print(CMD, "FCF_FOPT 0x%02" PRIx8, fcf_fopt);
3041         }
3042
3043         return ERROR_OK;
3044 }
3045
3046 COMMAND_HANDLER(kinetis_create_banks_handler)
3047 {
3048         if (CMD_ARGC > 0)
3049                 return ERROR_COMMAND_SYNTAX_ERROR;
3050
3051         create_banks = true;
3052
3053         return ERROR_OK;
3054 }
3055
3056
3057 static const struct command_registration kinetis_security_command_handlers[] = {
3058         {
3059                 .name = "check_security",
3060                 .mode = COMMAND_EXEC,
3061                 .help = "Check status of device security lock",
3062                 .usage = "",
3063                 .handler = kinetis_check_flash_security_status,
3064         },
3065         {
3066                 .name = "halt",
3067                 .mode = COMMAND_EXEC,
3068                 .help = "Issue a halt via the MDM-AP",
3069                 .usage = "",
3070                 .handler = kinetis_mdm_halt,
3071         },
3072         {
3073                 .name = "mass_erase",
3074                 .mode = COMMAND_EXEC,
3075                 .help = "Issue a complete flash erase via the MDM-AP",
3076                 .usage = "",
3077                 .handler = kinetis_mdm_mass_erase,
3078         },
3079         {
3080                 .name = "reset",
3081                 .mode = COMMAND_EXEC,
3082                 .help = "Issue a reset via the MDM-AP",
3083                 .usage = "",
3084                 .handler = kinetis_mdm_reset,
3085         },
3086         COMMAND_REGISTRATION_DONE
3087 };
3088
3089 static const struct command_registration kinetis_exec_command_handlers[] = {
3090         {
3091                 .name = "mdm",
3092                 .mode = COMMAND_ANY,
3093                 .help = "MDM-AP command group",
3094                 .usage = "",
3095                 .chain = kinetis_security_command_handlers,
3096         },
3097         {
3098                 .name = "disable_wdog",
3099                 .mode = COMMAND_EXEC,
3100                 .help = "Disable the watchdog timer",
3101                 .usage = "",
3102                 .handler = kinetis_disable_wdog_handler,
3103         },
3104         {
3105                 .name = "nvm_partition",
3106                 .mode = COMMAND_EXEC,
3107                 .help = "Show/set data flash or EEPROM backup size in kilobytes,"
3108                         " set two EEPROM sizes in bytes and FlexRAM loading during reset",
3109                 .usage = "('info'|'dataflash' size|'eebkp' size) [eesize1 eesize2] ['on'|'off']",
3110                 .handler = kinetis_nvm_partition,
3111         },
3112         {
3113                 .name = "fcf_source",
3114                 .mode = COMMAND_EXEC,
3115                 .help = "Use protection as a source for Flash Configuration Field or allow writing arbitrary values to the FCF"
3116                         " Mode 'protection' is safe from unwanted locking of the device.",
3117                 .usage = "['protection'|'write']",
3118                 .handler = kinetis_fcf_source_handler,
3119         },
3120         {
3121                 .name = "fopt",
3122                 .mode = COMMAND_EXEC,
3123                 .help = "FCF_FOPT value source in 'kinetis fcf_source protection' mode",
3124                 .usage = "[num]",
3125                 .handler = kinetis_fopt_handler,
3126         },
3127         {
3128                 .name = "create_banks",
3129                 .mode = COMMAND_CONFIG,
3130                 .help = "Driver creates additional banks if device with two/four flash blocks is probed",
3131                 .handler = kinetis_create_banks_handler,
3132                 .usage = "",
3133         },
3134         COMMAND_REGISTRATION_DONE
3135 };
3136
3137 static const struct command_registration kinetis_command_handler[] = {
3138         {
3139                 .name = "kinetis",
3140                 .mode = COMMAND_ANY,
3141                 .help = "Kinetis flash controller commands",
3142                 .usage = "",
3143                 .chain = kinetis_exec_command_handlers,
3144         },
3145         COMMAND_REGISTRATION_DONE
3146 };
3147
3148
3149
3150 const struct flash_driver kinetis_flash = {
3151         .name = "kinetis",
3152         .commands = kinetis_command_handler,
3153         .flash_bank_command = kinetis_flash_bank_command,
3154         .erase = kinetis_erase,
3155         .protect = kinetis_protect,
3156         .write = kinetis_write,
3157         .read = default_flash_read,
3158         .probe = kinetis_probe,
3159         .auto_probe = kinetis_auto_probe,
3160         .erase_check = kinetis_blank_check,
3161         .protect_check = kinetis_protect_check,
3162         .info = kinetis_info,
3163         .free_driver_priv = kinetis_free_driver_priv,
3164 };