
SDCC Compiler User Guide

13th July 2001

Contents

1 Introduction 4
1.1 About SDCC . 4

CONTENTS CONTENTS

3 Using SDCC 13
3.1 Compiling . 13

3.1.1 Single Source File Projects 13

CONTENTS CONTENTS

1 INTRODUCTION

9 Support 57

1 INTRODUCTION 1.5 System Requirements

� the default directory where include, library and documention files are stored is
no in /usr/local/share

� char type parameters to vararg functions are casted to int unless explicitly casted,
e.g.:
char a=3;
printf ("%d %c\n", a, (char)a);
will push a as an int and as a char resp.

� option –regextend has been removed

� option –noreparms has been removed

<pending: more incompatibilities?>

1.5 System Requirements

What do you need before you start installation of SDCC? A computer, and a desire
to compute. The preferred method of installation is to compile SDCC from source
using GNU gcc and make. For Windows some pre-compiled binary distributions are
available for your convenience. You should have some experience with command line
tools and compiler use.

1.6 Other Resources

The SDCC home page athttp://sdcc.sourceforge.net/ is a great place to
find distribution sets. You can also find links to the user mailing lists that offer help
or discuss SDCC with other SDCC users. Web links to other SDCC related sites can
also be found here. This document can be found in the DOC directory of the source

2 INSTALLATION

2 INSTALLATION 2.3 Testing out the SDCC Compiler

2.2.2 Windows Install Using Cygwin

1. Download and install the cygwin package from the redhat sitehttp://sources.
redhat.com/cygwin/ . Currently, this involved downloading a small install
program which then automates downloading and installing selected parts of the
package (a large 80M byte sized dowload for the whole thing).

2. Bring up a Unix/Bash command line terminal from the Cygwin menu.

3. Follow the instructions in the preceding Linux/Unix installation section.

2.3 Testing out the SDCC Compiler

2 INSTALLATION 2.5 Additional Information for Windows Users

and header files to /usr/local/share/sdcc/lib and /usr/local/share/sdcc/include.

2.5 Additional Information for Windows Users

<pending: is this up to date?>

2 INSTALLATION 2.8 Components of SDCC

3 USING SDCC

2.8.5 sdcdb - Source Level Debugger

3 USING SDCC 3.2 Command Line Options

Alternatively,foomain.ccan be separately compiled as well:

sdcc -c foomain.c
sdcc foomain.rel foo1.rel foo2.rel

The file containing themain() function MUST be theFIRST file specified in the com-
mand 6ine, since the 6inkage editor processes file in the order they are presented to
it.

3.1.3 Projects witi.9111d(edctialed)-24Librariesel

3 USING SDCC 3.2 Command Line Options

3 USING SDCC 3.2 Command Line Options

–code-loc<Value> The start location of the code segment, default value 0. Note when
this option is used the interrupt vector table is also relocated to the given
address. The value entered can be in Hexadecimal or Decimal format, e.g.:
–code-loc 0x8000 or –code-loc 32768.

–stack-loc

3 USING SDCC 3.2 Command Line Options

the lower 1K of the internal RAM, which is mapped to 0x400000. Note

3 USING SDCC 3.2 Command Line Options

-E Run only the C preprocessor. Preprocess all the C source files specified

3 USING SDCC 3.2 Command Line Options

–int-long-reent

3 USING SDCC 3.3 MCS51/DS390 Storage Class Language Extensions

The basic blocks at this stage ordered in the depth first number, so they
may not be in sequence of execution.

–dumpgcseWill create a dump of iCode’s, after global subexpression elimination,
into a file named<source filename>.dumpgcse.

–dumpdeadcode

3 USING SDCC 3.5 Parameters & Local Variables

ram */
unsigned char _data *ucdp ; /* pointer to data in internal
ram */
unsigned char _code *uccp ; /* pointer to data in R/O code
space */
unsigned char _idata *uccp; /* pointer to upper 128 bytes
of ram */

All unqualified pointers are treated as 3-byte (4-byte for the ds390)genericpointers.
These type of pointers can also to be expliceaiP declared.

unsigned char _generic *ucgp;

The highest order byte of thegeneric

3 USING SDCC 3.6 OverlayingIn the above example the variablei will be allocated in the external ram,bvar in bit
addressable space andj in internal ram. When compiled with–stack-autoor when a
function is declared asreentrantthis can only be done for static variables.

Parameters however are not allowed any storage class, (storage classes for parame-
ters will be ignored), their allocation is governed by the memory model in use, and the
reentrancy options.

3.6 Overlaying

3 USING SDCC 3.11 Absolute Addressing

3 USING SDCC 3.14 int(16 bit) and long (32 bit) Support

a number less than 100 (which implies a limit of utmost 100 inline assembler labelsp-21]TJ -330.43 -11.955 Td[(function)]TJ/F35 9.963 Tf 32.906 0 Td[())-25(.)-299(It)-218(is)-218(strongly)-217(recommended)-218(that)-218(each)-217(assembly)-218(instruction)-217((including)-218(labels))]TJ -32.906 -11.956 Td[(be)-312(placed)-312(in)-312(a)-313(separate)-312(line)-312((as)-312(the)-312(e)15(xample)-312(sho)25(ws).)-497(When)-312(the)]TJ/F39 9.963 Tf 258.149 0 Td[(–peep-asm)]TJ/F35 9.963 Tf 46.269 0 Td[(command)]TJ -304.418 -11.955 Td[(line)-236(option)-236(is)-236(used,)-239(the)-236(inline)-236(assembler)-236(code)-236(will)-236(be)-237(passed)-236(through)-236(the)-236(peephole)-236(opti-)]TJ 0 -11.955 Td[(mizer)55(.)-302(This)-225(might)-225(cause)-224(some)-225(une)15(xpected)-225(changes)-225(in)-225(the)-225(inline)-225(assembler)-225(code.)-302(Please)]TJ 0 -11.955 Td[(go)-283(throught)-282(the)-283(peephole)-282(optimizer)-283(rules)-282(defined)-283(in)-282(file)]TJ/F39 9.963 Tf 224.575 0 Td[(SDCCpeeph.def)]TJ/F35 9.963 Tf 68.19 0 Td[(carefully)-282(be-)]TJ -292.765 -11.955 Td[(fore)-250(using)-250(this)-250(option.)]TJ/F45 9.963 Tf 0 -23.91 Td[(_asm)]TJ 0 -11.955 Td[(mov)-3000(b,#10)]TJ 0 -11.956 Td[(00001$:)]TJ 0 -11.955 Td[(djnz)-2400(b,00001$)]TJ 0 -11.955 Td[(343.71 0.398 re J
ET
00 0.398 re 65 -11brizer)50.398 re C_so6.955 in ohT.71 S(using_siconta(plac1 Susiomeylac1 Svmplealiding_sicoohT.71 Su)-2rstooding_sibylac1 St 65 -11b re C_so6.40(,2400(b,00001$)]TJ 00(usin311(ion)-2ene)-312usiomeylac11(re C_so6.9511(ditrotimpleviomeesin311(bit�-312ongly)tin311(zer)ssho)24re 65 -312ongpiso6.9511(doesin311(not5 -312do2400(b,00001$)]TJ 0usiomeylag)-2vmplealida(line)-)-25fre)-250(1.955 Tsembler5 Twi0(une)-49497(When)-option.)]TJ/1435 92.963 Tf_.955 Td[(..sho12d[(-11.95 343.71 0.398 re J
110.087.963 Tfk)10-312(tyw)10-ort))-pai.955 Tdlly)-239 279T
00 0..398 rI25(the)-885(inline)-2258 in ohT.-885(usnot5 xpecger5 Twenc)-885(inomeylag)-5(iC-Lding)s)-2(wsmple)-3eleviomeesi258 in it-885(usnoxpecger5 Twenc)-885(imbler)-21500001$:

3 USING SDCC 3.15 Floating Point Support

are all developed in ANSI-C to facilitate porting to other MCUs, although some model
specific assembler optimations are used. The following files contain the described rou-

4 SDCC TECHNICAL DATA 4.1 Optimizations

4 SDCC TECHNICAL DATA 4.1 Optimizations

Note: the dead stores created by this copy propagation will be eliminated by dead-
code elimination.

4.1.4 Loop Optimizations

4 SDCC TECHNICAL DATA 4.1 Optimizations

The more expensive multiplication is changed to a less expensive addition.

4.1.5 Loop Reversing

This optimization is done to reduce the overhead of checking loop boundaries for every
iteration. Some simple loops can be reversed and implemented using a “decrement and

4 SDCC TECHNICAL DATA 4.1 Optimizations

4.1.7 ’switch’ Statements

SDCC changes switch statements to jump tables when the following conditions are
true.

� The case labels are in numerical sequence, the labels need not be in order, and
the starting number need not be one or zero.

switch(i) { switch (i) {
case 4:... case 1:
...
case 5:... case 2:
...
case 3:... case 3:
...
case 6:... case 4:
...
} }

Both the above switch statements will be implemented using a jump-table.

� The number of case labels is at least three, since it takes two conditional state-
ments to handle the boundary conditions.

�

4 SDCC TECHNICAL DATA 4.1 Optimizations

rrc a
mov _i,a

Note that SDCC stores numbers in little-endian format (i.e. lowest order first).

4.1.9 Bit-rotation

4 SDCC TECHNICAL DATA 4.1 Optimizations

000D E4 64 clr a
000E 13 65 rrc a
000F F5*02 66 mov _foo_hob_1_1,a

Variations of this case however willnotbe recognized. It is a standard C expression, so
I heartily recommend this be the only way to get the highest order bit, (it is portable).
Of course it will be recognized even if it is embedded in other expressions, e.g.:

xyz = gint + ((gint > > 15) & 1);

will still be recognized.

4.1.11 Peep-hole Optimizer

The compiler uses a rule based, pattern matching and re-writing mechanism for peep-
hole optimization. It is inspired bycopta peep-hole optimizer by Christopher W. Fraser
(cwfraser@microsoft.com). A default set of rules are compiled into the compiler, ad-
ditional rules may be added with the–peep-file <filename>option. The rule language
is best illustrated with examples.

replace {
mov %1,a
mov a,%1
} by {
mov %1,a
}

4 SDCC TECHNICAL DATA 4.2 Pragmas

push ar1

with the restart option the rule will be applied again to the resulting code and then
all the pop-push pairs will be eliminated to yield:

; nop
; nop

A conditional function can be attached to a rule. Attaching rules are somewhat more
involved, let me illustrate this with an example.

replace {
ljmp %5
%2:
} by {
sjmp %5
%2:
} if labelInRange

The optimizer does a look-up of a function name table defined in functioncallFuncBy-
Namein the source file SDCCpeeph.c, with the namelabelInRange. If it finds a cor-
responding entry the function is called. Note there can be no parameters specified for
these functions, in this case the use of%5 is crucial, since the functionlabelInRange
expects to find the label in that particular variable (the hash table containing the vari-

4 SDCC TECHNICAL DATA 4.2 Pragmas

4 SDCC TECHNICAL DATA 4.4 Interfacing with Assembly Routines

Note the header file “serial.h” MUST be included in the file containing the ’main’
function.

� ser.h - Alternate serial routine provided by Wolfgang Esslinger <wolfgang@WiredMinds.com>
these routines are more compact and faster. Please see documentation in file SD-
CCDIR/sdcc51lib/ser.c

�

4 SDCC TECHNICAL DATA 4.5 External Stack

return c_funcˇ10,9ı;
}

4 SDCC TECHNICAL DATA 4.6 ANSI-Compliance

5 TIPS 4.7 Cyclomatic Complexity

4.7 Cyclomatic Complexity

6 RETARGETTING FOR OTHER MCUS.

If you detect that the stack is over writing you data, then the following can be done.
–xstack will cause an external stack to be used for saving registers and (if –stack-auto

7 SDCDB - SOURCE LEVEL DEBUGGER

7 SDCDB - SOURCE LEVEL DEBUGGER 7.2 How the Debugger Works

7.2 How the Debugger Works

When the –debug option is specified the compiler generates extra symbol information
some of which are put into the the assembler source and some are put into the .cdb

7 SDCDB - SOURCE LEVEL DEBUGGER 7.5 Debugger Commands.

7.5.7 step

Step program until it reaches a different source line.

7.5.8 next

Step program, proceeding through subroutine calls.

7.5.9 run

Start debugged program.

8 OTHER PROCESSORS

;; x sdcdbsrc-delete SDCDB Delete
all breakpoints if no arg
;; given or delete
arg (C-u arg x)
;; m sdcdbsrc-frame SDCDB Dis-
play current frame if no arg,
;; given or dis-
play frame arg
;; buffer point

;; ! sdcdbsrc-goto-sdcdb Goto the SD-
CDB output buffer
;; p sdcdb-print-c-sexp SDCDB print
command for data at
;; buffer point

;; g sdcdbsrc-goto-sdcdb Goto the SD-
CDB output buffer
;; t sdcdbsrc-mode Toggles Sd-
cdbsrc mode (turns it off)
;;
;; C-c C-f sdcdb-finish-from-src SDCDB fin955 Td[(cdbsrc)-600(ish)-600(command)]TJ 0 -11.955 Td[(;;)]TJ 0 -11.956 Td[(;;)-600(C-x)-600(SPC)-5400(sdcdb-break)-279155 ll brend fod

10 ACKNOWLEDGMENTS

holding varibles. IY is currently unusued. Return values are stored in HL. One bad
side effect of using IX as the base pointer is that a functions stack frame is limited to

Index
I

index, 6

58

