SDCC Compiler User Guide

Contents

1

Introduction

11
1.2
13
14
15
1.6

About SDCC . .
Open Source . .

16th July 2001

Typographic conventions
Compatibility with previousversions
System Requirements

Other Resources

oo aa®

CONTENTS CONTENTS

3 Using SDCC 13
3.1 Compiling 13
3.1.1 Single Source FileProjects 13
3.1.2 Projects with Multiple Source Files 13
3.1.3 Projects with Additional Libraries 14
3.2 CommandLineOptions.o.... 14
3.2.1 Processor Selection Options 14
3.2.2 PreprocessorOptions 15
3.2.3 LinkerOptions 15
324 MCS510ptions i 16
3.25 DS3900ptioNS 16
3.2.6 OptimizationOptions 17
3.27 OtherOptions. v it 17
3.2.8 Intermediate Dump Options 19
3.3 MCS51/DS390 Storage Class Language Extensions 20
331 xdata 20
332 data 20
333 idata. 20
334 bit. 21
335 sfr/sbit. 21
3.4 Pointers e 21
3.5 Parameters & Local Variables 22
3.6 Overlaying 23
3.7 Interrupt Service Routines L 24
3.8 Critical Functions 25
3.9 Naked Functions 25
3.10 Functionsusing privatebanks 26
3.11 Absolute Addressing 27
3.12 Startup Code 27
3.13 Inline AssemblerCode, 27
3.14 int(16 bit) and long (32 bit) Support oL 28
3.15 Floating Point Support 29
3.16 MCS51 MemoryModels 30

CONTENTS

CONTENTS

4.1.9 Bit-rotation

4.1.10 Highest Order Bit

1 INTRODUCTION

9 Support

56

1 INTRODUCTION 1.2 Open Source

The compiler also allowmline assembler cod® be embedded anywhere in a func-
tion. In addition, routines developed in assembly can also be called.

SDCC also provides an option (—cyclomatic) to report the relative complexity of a
function. These functions can then be further optimized, or hand coded in assembly if
needed.

SDCC also comes with a companion source level debugger SDCDB, the debugger
currently uses ucSim a freeware simulator for 8051 and other micro-controllers.

The latest version can be downloaded frbotitp://sdcc.sourceforge.net/.

1.2 Open Source

All packages used in this compiler system apensourceandfreeware source code

1 INTRODUCTION 1.5 System Requirements

2 INSTALLATION

2 Installation

2.1 Linux/Unix Installation
1. Download the source package, it will be named something like sdcc-2.x.x.tgz.
2. Bring up a command line terminal, such as xterm.

3. Unpack the file using a command likear -xzf sdcc-2.x.x.tgz ", this will create
a sub-directory called sdcc with all of the sources.

. Change directory into the main SDCC directory, for example tygesdcc .
. Type"./configure ". This configures the package for compilation on your system.

. Type"make ". All of the source packages will compile, this can take a while.

N o o b

. Type"make install" as root. This copies the bina
files, the libraries and the documentation to the install directories.

2.2 Windows Installation

<pending: is this complete? where is borland, mingw>

2 INSTALLATION 2.5 Additional Information for Windows Users

and header files to /usr/local/share/sdcc/lib and /usr/local/share/sdcc/include.

2.5 Additional Information for Windows Users

<pending: is this up to date?>

2 INSTALLATION 2.6 SDCC on Other Platforms

2 INSTALLATION 2.8 Components of SDCC

as-z80

3 USING SDCC

2.8.5 sdcdb - Source Level Debugger

Sdcdb is the companion source level debugger. The current version of the debugger
uses Daniel's Simulator S51, but can be easily changed to use other simulators.

3 Using SDCC

3.1 Compiling
3.1.1 Single Source File Projects

For single source file 8051 projects the process is very simple. Compile your programs

3 USING sDCC 3.2 Command Line Options

3 USING sDCC 3.2 Command Line Options

—code-lo&Value> The start location of the code segment, default value 0. Note when
this option is used the interrupt vector table is also relocated to the given
address. The value entered can be in Hexadecimal or Decimal format, e.g.:
—code-loc 0x8000 or —code-loc 32768.

—stack-loe<Value> The initial value of the stack pointer. The default value of the stack
pointer is 0x07 if only register bank Only reOn6, if other register bankl1(re)15are

3 USING sDCC 3.2 Command Line Options

3 USING sDCC 3.2 Command Line Options

-E Run only the C preprocessor. Preprocess all the C source files specified

3 USING sDCC 3.2 Command Line Options

—int-long-reent Integer (16 bit) and long (32 bit) libraries have been compiled as reen-
trant. Note by default these libraries are compiled as non-reentrant. See
section Installation for more details.

—cyclo7atic

3 USING sSDCC 3.3 MCS51/DS390 Storage Class Language Extensions

3 USING SDCC 3.4 Pointers

3.3.4 bit

This is a data-type and a storage class specifier. When a variable is declared as a bit, it
is allocated into the bit addressable memory of 8051, e.g.:

bit iFlag;

3.3.5 sfr/shit
Like the bit keyword,sfr / sbit

3 USING SDCC 3.5 Parameters & Local Variables

unsigned char _data *ucdp ; /* pointer to data in internal

ram */

unsigned char _code *uccp ; /* pointer to data in R/O code
space */

unsigned char _idata *uccp; /* pointer to upper 128 bytes
of ram */

All unqualified pointers are treated as 3-byte (4-byte for the dsgéfgricpointers.
These type of pointers can also to be explicitly declared.

unsigned char _generic *ucgp;
The highest order byte of thgenericpointers contains the data space information. As-

sembler support routines are called whenever data is stored or retrieved usingrt routines
2r)-285(type)-285(will)-285(generater-285(the)-285(most)-285(ef) 25(ficient)-285(code.)-415(Pointers)-285(declared)-285(usingr-285(a)]

3 USING SDCC 3.6 Overlaying

In the above example the variablevill be allocated in the external rarbyar in bit
addressable space apih internal ram. When compiled with

3 USING sDCC 3.7 Interrupt Service Routines

3.7 Interrupt Service Routines

SDCC allows interrupt service routines to be coded in C, with some extended key-
words.

3 USING SDCC 3.8 Critical Functions

3 USING sDCC 3.11 Absolute Addressing

3 USING sDCC 3.15 Floating Point Support

4 SDCC TECHNICAL DATA 4.1 Optimizations

In this case the address arithmetic a->b[i] will be computed only once; the equiva-
lent code in C would be.

iTemp = a->b[i];
iTemp.c = 10;
iTemp.d = 11;

The compiler will try to keep these temporary variables in registers.

4.1.2 Dead-Code Elimination

int global;

void f O {

int i;

i =1; /* dead store */

global = 1; /* dead store */
global = 2;

return;

global = 3; /* unreachable */
}

will be changed to
int global; void T ()

{
global = 2;
return;

}

4.1.3 Copy-Propagation

int 1O {
inti, j;
i = 10;
=i
return j;

}

will be changed to

int fQ {
int i,j;
i =10;
J = 10;
return 10;

}

32

4 SDCC TECHNICAL DATA 4.1 Optimizations

Note: the dead stores created by this copy propagation will be eliminated by dead-
code elimination.

4.1.4 Loop Optimizations

4 SDCC TECHNICAL DATA 4.1 Optimizations

The more expensive multiplication is changed to a less expensive addition.

4 SDCC TECHNICAL DATA 4.1 Optimizations

4.1.7 ’switch’ Statements

SDCC changes switch statements to jump tables when the following conditions are
true.

The case labels are in numerical sequence, the labels need not be in order, and
the starting number need not be one or zero.

switch(i) { switch (1) {

case 4:... case 1:
case 5:... case 2:
case 3:... case 3:
case 6:... case 4:

} }

4 SDCC TECHNICAL DATA 4.1 Optimizations

% heartily recommend this be the only way to get the highest order bit, (it is portable).
Of course it will be recognized even if it is embedded in other expressions, e.g.:

xyz = gint + ((gint >> 15) & 1);

Library Routines

setjmp.h - contains defintion for ANSI setjmp & longjmp routines. Note in this
case setjmp & longjmp can be used between functions executing within the same
register bank, if long jmp is executed from a function that is using a different
register bank from the function issuing the setjmp function, the results may be
unpredictable. The jump buffer requires 3 bytes of data (the stack pointer & a 16

stdlib.h - contains the following functions.

string.h - contains the following functions.

4 SDCC TECHNICAL DATA 4.4 Interfacing with Assembly Routines

_asm_func:

mov a,dpl

add a,_asm_func_PARM_2
mov dpl,a

mov dpl,#0x00

ret

Note here that the return values are placed in 'dpl’ - One byte return value, 'dpl’ LSB
& 'dph’ MSB for two byte values. 'dpl’, 'dph’ and 'b’ for three byte values (generic

4 SDCC TECHNICAL DATA 4.5 External Stack

_asm_func:
push _bp
mov _bp,sp
mov r2,dpl
mov a,_bp
clr c

add a,#0xfd
mov r0,a
add a,#0xfc
mov rl,a
mov a,@r0
add a,r2
mov dpl,a
mov dph,#0x00
mov sp,_bp
pop _bp

ret

The compiling and linking procedure remains the same, however note the extra en-

try & exit linkage required for the assembler code, _bp is the stack frame pointer and
is used to compute the offset into the stack for parameters and local variables.

45 External Stack

4 SDCC TECHNICAL DATA 4.7 Cyclomatic Complexity

foo()
{

sl = s2 ; /* is invalid in SDCC although allowed in ANSI */

i..

struct s fool (struct s parms) /* is invalid in SDCC although allowed
in ANSI */
{

struct s rets;

return rets;/* is invalid in SDCC although allowed in ANSI */

}
'long long’ (64 bit integers) not supported.

'double’ precisionoublfloomalongiot not supported.

5 TIPS

SDCC uses the following formula to compute the complexity:

complexity = UO50number of edges in control flow graphU051 - U050number of nodes in control
flow graphU051 + 2;

Having said that the industry standard is 10, you should be aware that in some cases
it be may unavoidable to have a complexity level of less than 10. For example if you
have switch statement with more than 10 case labels, each case label adds one to the
complexity level. The complexity level is by no means an absolute measure of the al-
gorithmic complexity of the function, it does however provide a good starting point for
which functions you might look at for further optimization.

5 TIPS

Here are a fe Td[(Ha379(guidelines)-378(that)-378(willHa379(help)-378(the)-378(compiler)-379(generatt

7 SDCDB - SOURCE LEVEL DEBUGGER

This phase determines the live— ranges; by live range 1 mean thise iTemp vari—
ables de ned by the compiler that still survive after all the optimizations - Live
range analysis is essential for register allowcation , since these computation deter—

Phase weis register allocation - There are two parts to this process -

7 SDCDB - SOURCE LEVEL DEBUGGER 7.3 Starting the Debugger

7.3 Starting the Debugger

The debugger can be started using the following command line. (Assume the file you
are debugging has the file name foo).

sdcdb foo

The debugger will look for the following files.

foo.c - the source file.
foo.cdb - the debugger symbol information file.

foo.ihx - the intel hex format object file.

7.4 Command Line Options.

—directory=<source file directory> this option can used to specify the directory

7 SDCDB - SOURCE LEVEL DEBUGGER 7.6 Interfacing with XEmacs.

9 SUPPORT

;; C-x SPC sdcdb-break Set break for line with
point

10 ACKNOWLEDGMENTS

10 Acknowledgments

Sandeep Dutta ,sandeep.dutta@usa.net’ - SDCC, the compiler, MCS11 code generator,
Debugger, AVR port
Alan Baldwin baldwin@shop-pdp.kent.edu’ - Initial version of ASXXXX & ASLINE.

Index

index, 6

58

