
AltOS

Altos Metrum Operating System
Keith Packard

AltOS: Altos Metrum Operating System
Keith Packard
Copyright © 2012 Keith Packard

This document is released under the terms of the Creative Commons ShareAlike 3.0 license.

Revision History
Revision 1.1 05 November 2012
Portable version
Revision 0.1 22 November 2010
Initial content

http://creativecommons.org/licenses/by-sa/3.0/

Table of Contents
1. Overview .. 1
2. AltOS Porting Layer ... 3

2.1. Low-level CPU operations .. 3
2.1.1. ao_arch_block_interrupts/ao_arch_release_interrupts ... 3
2.1.2. ao_arch_save_regs, ao_arch_save_stack, ao_arch_restore_stack 3
2.1.3. ao_arch_wait_interupt .. 3

2.2. GPIO operations ... 3
2.2.1. GPIO setup .. 4
2.2.2. Reading and writing GPIO pins .. 4

2.3. 8051 memory spaces .. 5
2.3.1. __data ... 5
2.3.2. __idata .. 5
2.3.3. __xdata ... 5
2.3.4. __pdata ... 5
2.3.5. __code .. 5
2.3.6. __bit .. 5
2.3.7. sfr, sfr16, sfr32, sbit ... 6

2.4. Function calls on the 8051 .. 6
2.4.1. __reentrant functions .. 6
2.4.2. Non __reentrant functions .. 6
2.4.3. __interrupt functions ... 6
2.4.4. __critical functions and statements .. 6

3. Task functions ... 7
3.1. ao_add_task .. 7
3.2. ao_exit ... 7
3.3. ao_sleep .. 7
3.4. ao_wakeup .. 7
3.5. ao_alarm ... 8
3.6. ao_start_scheduler ... 8
3.7. ao_clock_init .. 8

4. Timer Functions .. 9
4.1. ao_time ... 9
4.2. ao_delay .. 9
4.3. ao_timer_set_adc_interval .. 9
4.4. ao_timer_init ... 9

5. AltOS Mutexes ... 10
5.1. ao_mutex_get ... 10
5.2. ao_mutex_put ... 10

6. DMA engine ... 11
6.1. CC1111 DMA Engine .. 11

6.1.1. ao_dma_alloc ... 11
6.1.2. ao_dma_set_transfer ... 11
6.1.3. ao_dma_start ... 11
6.1.4. ao_dma_trigger .. 12
6.1.5. ao_dma_abort .. 12

6.2. STM32L DMA Engine ... 12
6.2.1. ao_dma_alloc ... 12
6.2.2. ao_dma_set_transfer ... 12

This document is released under the terms of the Creative Commons ShareAlike 3.0 license. iii

AltOS

6.2.3. ao_dma_set_isr .. 12
6.2.4. ao_dma_start ... 12
6.2.5. ao_dma_done_transfer .. 13
6.2.6. ao_dma_abort .. 13

7. Stdio interface ... 14
7.1. putchar ... 14
7.2. getchar .. 14
7.3. flush .. 14
7.4. ao_add_stdio ... 14

8. Command line interface ... 15
8.1. ao_cmd_register ... 15
8.2. ao_cmd_lex ... 15
8.3. ao_cmd_put16 .. 15
8.4. ao_cmd_put8 .. 16
8.5. ao_cmd_white ... 16
8.6. ao_cmd_hex .. 16
8.7. ao_cmd_decimal ... 16
8.8. ao_match_word .. 16
8.9. ao_cmd_init ... 16

9. USB target device ... 17
9.1. ao_usb_flush ... 17
9.2. ao_usb_putchar .. 17
9.3. ao_usb_pollchar .. 17
9.4. ao_usb_getchar ... 17
9.5. ao_usb_disable ... 17
9.6. ao_usb_enable .. 18
9.7. ao_usb_init .. 18

10. Serial peripherals .. 19
10.1. ao_serial_getchar .. 19
10.2. ao_serial_putchar ... 19
10.3. ao_serial_drain .. 19
10.4. ao_serial_set_speed .. 19
10.5. ao_serial_init ... 19

11. CC1111/CC1120/CC1200 Radio peripheral ... 20
11.1. Radio Introduction ... 20
11.2. ao_radio_set_telemetry .. 20
11.3. ao_radio_set_packet ... 20
11.4. ao_radio_set_rdf ... 20
11.5. ao_radio_idle ... 21
11.6. ao_radio_get ... 21
11.7. ao_radio_put ... 21
11.8. ao_radio_abort .. 21
11.9. Radio Telemetry ... 21

11.9.1. ao_radio_send ... 21
11.9.2. ao_radio_recv ... 22

11.10. Radio Direction Finding ... 22
11.10.1. ao_radio_rdf ... 22

11.11. Radio Packet Mode .. 22
11.11.1. ao_packet_putchar .. 22
11.11.2. ao_packet_pollchar .. 22

This document is released under the terms of the Creative Commons ShareAlike 3.0 license. iv

AltOS

11.11.3. ao_packet_slave_start .. 22
11.11.4. ao_packet_slave_stop .. 23
11.11.5. ao_packet_slave_init .. 23
11.11.6. ao_packet_master_init ... 23

This document is released under the terms of the Creative Commons ShareAlike 3.0 license. v

Chapter 1. Overview
AltOS is a operating system built for a variety of microcontrollers used in Altus Metrum devices. It has a
simple porting layer for each CPU while providing a convenient operating enviroment for the developer.
AltOS currently supports three different CPUs:

• STM32L series from ST Microelectronics. This ARM Cortex-M3 based microcontroller offers low power
consumption and a wide variety of built-in peripherals. Altus Metrum uses this in the TeleMega,
MegaDongle and TeleLCO projects.

• CC1111 from Texas Instruments. This device includes a fabulous 10mW digital RF transceiver along
with an 8051-compatible processor core and a range of peripherals. This is used in the TeleMetrum,
TeleMini, TeleDongle and TeleFire projects which share the need for a small microcontroller and an RF
interface.

• ATmega32U4 from Atmel. This 8-bit AVR microcontroller is one of the many used to create Arduino
boards. The 32U4 includes a USB interface, making it easy to connect to other computers. Altus
Metrum used this in prototypes of the TeleScience and TelePyro boards; those have been switched to
the STM32L which is more capable and cheaper.

Among the features of AltOS are:

• Multi-tasking. While microcontrollers often don’t provide separate address spaces, it’s often easier to
write code that operates in separate threads instead of tying everything into one giant event loop.

• Non-preemptive. This increases latency for thread switching but reduces the number of places where
context switching can occur. It also simplifies the operating system design somewhat. Nothing in the
target system (rocket flight control) has tight timing requirements, and so this seems like a reasonable
compromise.

• Sleep/wakeup scheduling. Taken directly from ancient Unix designs, these two provide the
fundemental scheduling primitive within AltOS.

• Mutexes. As a locking primitive, mutexes are easier to use than semaphores, at least in my
experience.

• Timers. Tasks can set an alarm which will abort any pending sleep, allowing operations to time-out
instead of blocking forever.

The device drivers and other subsystems in AltOS are conventionally enabled by invoking their _init()
function from the main function before that calls ao_start_scheduler(). These functions initialize the pin
assignments, add various commands to the command processor and may add tasks to the scheduler
to handle the device. A typical main program, thus, looks like:

void
main(void)
{
 ao_clock_init();

 /* Turn on the LED until the system is stable */
 ao_led_init(LEDS_AVAILABLE);
 ao_led_on(AO_LED_RED);

This document is released under the terms of the Creative Commons ShareAlike 3.0 license. 1

Overview

 ao_timer_init();
 ao_cmd_init();
 ao_usb_init();
 ao_monitor_init(AO_LED_GREEN, TRUE);
 ao_rssi_init(AO_LED_RED);
 ao_radio_init();
 ao_packet_slave_init();
 ao_packet_master_init();
#if HAS_DBG
 ao_dbg_init();
#endif
 ao_config_init();
 ao_start_scheduler();
}

As you can see, a long sequence of subsystems are initialized and then the scheduler is started.

This document is released under the terms of the Creative Commons ShareAlike 3.0 license. 2

Chapter 2. AltOS Porting Layer
AltOS provides a CPU-independent interface to various common microcontroller subsystems, including
GPIO pins, interrupts, SPI, I2C, USB and asynchronous serial interfaces. By making these CPU-
independent, device drivers, generic OS and application code can all be written that work on any
supported CPU. Many of the architecture abstraction interfaces are prefixed with ao_arch.

2.1. Low-level CPU operations
These primitive operations provide the abstraction needed to run the multi-tasking framework while
providing reliable interrupt delivery.

2.1.1. ao_arch_block_interrupts/ao_arch_release_interrupts
static inline void
ao_arch_block_interrupts(void);

static inline void
ao_arch_release_interrupts(void);

These disable/enable interrupt delivery, they may not discard any interrupts. Use these for sections of
code that must be atomic with respect to any code run from an interrupt handler.

2.1.2. ao_arch_save_regs, ao_arch_save_stack, ao_arch_restore_stack
static inline void
ao_arch_save_regs(void);

static inline void
ao_arch_save_stack(void);

static inline void
ao_arch_restore_stack(void);

These provide all of the support needed to switch between tasks.. ao_arch_save_regs must save all
CPU registers to the current stack, including the interrupt enable state. ao_arch_save_stack records
the current stack location in the current ao_task structure. ao_arch_restore_stack switches back to the
saved stack, restores all registers and branches to the saved return address.

2.1.3. ao_arch_wait_interupt
#define ao_arch_wait_interrupt()

This stops the CPU, leaving clocks and interrupts enabled. When an interrupt is received, this must
wake up and handle the interrupt. ao_arch_wait_interrupt is entered with interrupts disabled to ensure
that there is no gap between determining that no task wants to run and idling the CPU. It must sleep
the CPU, process interrupts and then disable interrupts again. If the CPU doesn’t have any reduced
power mode, this must at the least allow pending interrupts to be processed.

2.2. GPIO operations
These functions provide an abstract interface to configure and manipulate GPIO pins.

This document is released under the terms of the Creative Commons ShareAlike 3.0 license. 3

AltOS Porting Layer

2.2.1. GPIO setup

These macros may be invoked at system initialization time to configure pins as needed for system
operation. One tricky aspect is that some chips provide direct access to specific GPIO pins while others
only provide access to a whole register full of pins. To support this, the GPIO macros provide both port
+bit and pin arguments. Simply define the arguments needed for the target platform and leave the
others undefined.

ao_enable_output

#define ao_enable_output(port, bit, pin, value)

Set the specified port+bit (also called pin) for output, initializing to the specified value. The macro must
avoid driving the pin with the opposite value if at all possible.

ao_enable_input

#define ao_enable_input(port, bit, mode)

Sets the specified port/bit to be an input pin. mode is a combination of one or more of the following.
Note that some platforms may not support the desired mode. In that case, the value will not be defined
so that the program will fail to compile.

• AO_EXTI_MODE_PULL_UP. Apply a pull-up to the pin; a disconnected pin will read as 1.

• AO_EXTI_MODE_PULL_DOWN. Apply a pull-down to the pin; a disconnected pin will read as 0.

• 0. Don’t apply either a pull-up or pull-down. A disconnected pin will read an undetermined value.

2.2.2. Reading and writing GPIO pins

These macros read and write individual GPIO pins.

ao_gpio_set

#define ao_gpio_set(port, bit, pin, value)

Sets the specified port/bit or pin to the indicated value

ao_gpio_get

#define ao_gpio_get(port, bit, pin)

Returns either 1 or 0 depending on whether the input to the pin is high or low. == Programming the
8051 with SDCC

The 8051 is a primitive 8-bit processor, designed in the mists of time in as few transistors as possible.
The architecture is highly irregular and includes several separate memory spaces. Furthermore,
accessing stack variables is slow, and the stack itself is of limited size. While SDCC papers over the
instruction set, it is not completely able to hide the memory architecture from the application designer.

This document is released under the terms of the Creative Commons ShareAlike 3.0 license. 4

AltOS Porting Layer

When built on other architectures, the various SDCC-specific symbols are #defined as empty strings so
they don’t affect the compiler.

2.3. 8051 memory spaces
The data/xdata/__code memory spaces below were completely separate in the original 8051 design.
In the cc1111, this isn’t true—they all live in a single unified 64kB address space, and so it’s possible
to convert any address into a unique 16-bit address. SDCC doesn’t know this, and so a global address
to SDCC consumes 3 bytes of memory, 1 byte as a tag indicating the memory space and 2 bytes of
offset within that space. AltOS avoids these 3-byte addresses as much as possible; using them involves
a function call per byte access. The result is that nearly every variable declaration is decorated with a
memory space identifier which clutters the code but makes the resulting code far smaller and more
efficient.

2.3.1. __data

The 8051 can directly address these 128 bytes of memory. This makes them precious so they should be
reserved for frequently addressed values. Oh, just to confuse things further, the 8 general registers in
the CPU are actually stored in this memory space. There are magic instructions to bank switch among 4
banks of these registers located at 0x00 - 0x1F. AltOS uses only the first bank at 0x00 - 0x07, leaving the
other 24 bytes available for other data.

2.3.2. __idata

There are an additional 128 bytes of internal memory that share the same address space as __data but
which cannot be directly addressed. The stack normally occupies this space and so AltOS doesn’t place
any static storage here.

2.3.3. __xdata

This is additional general memory accessed through a single 16-bit address register. The CC1111F32
has 32kB of memory available here. Most program data should live in this memory space.

2.3.4. __pdata

This is an alias for the first 256 bytes of __xdata memory, but uses a shorter addressing mode with
single global 8-bit value for the high 8 bits of the address and any of several 8-bit registers for the low 8
bits. AltOS uses a few bits of this memory, it should probably use more.

2.3.5. __code

All executable code must live in this address space, but you can stick read-only data here too. It is
addressed using the 16-bit address register and special code access opcodes. Anything read-only
should live in this space.

2.3.6. __bit

The 8051 has 128 bits of bit-addressible memory that lives in the data segment from 0x20 through 0x2f.
Special instructions access these bits in a single atomic operation. This isn’t so much a separate address space
as a special addressing mode for a few bytes in the data segment.

This document is released under the terms of the Creative Commons ShareAlike 3.0 license. 5

AltOS Porting Layer

2.3.7. sfr, sfr16, sfr32, sbit

Access to physical registers in the device use this mode which declares the variable name, its type and
the address it lives at. No memory is allocated for these variables.

2.4. Function calls on the 8051
Because stack addressing is expensive, and stack space limited, the default function call declaration in
SDCC allocates all parameters and local variables in static global memory. Just like fortran. This makes
these functions non-reentrant, and also consume space for parameters and locals even when they are
not running. The benefit is smaller code and faster execution.

2.4.1. __reentrant functions

All functions which are re-entrant, either due to recursion or due to a potential context switch while
executing, should be marked as __reentrant so that their parameters and local variables get allocated
on the stack. This ensures that these values are not overwritten by another invocation of the function.

Functions which use significant amounts of space for arguments and/or local variables and which are
not often invoked can also be marked as __reentrant. The resulting code will be larger, but the savings in
memory are frequently worthwhile.

2.4.2. Non __reentrant functions

All parameters and locals in non-reentrant functions can have data space decoration so that they are
allocated in xdata, pdata or data space as desired. This can avoid consuming data space for infrequently
used variables in frequently used functions.

All library functions called by SDCC, including functions for multiplying and dividing large data types, are
non-reentrant. Because of this, interrupt handlers must not invoke any library functions, including the
multiply and divide code.

2.4.3. __interrupt functions

Interrupt functions are declared with with an __interrupt decoration that includes the interrupt number.
SDCC saves and restores all of the registers in these functions and uses the reti instruction at the end
so that they operate as stand-alone interrupt handlers. Interrupt functions may call the ao_wakeup
function to wake AltOS tasks.

2.4.4. __critical functions and statements

SDCC has built-in support for suspending interrupts during critical code. Functions marked as critical
will have interrupts suspended for the whole period of execution. Individual statements may also be marked as
critical which blocks interrupts during the execution of that statement. Keeping critical sections as short
as possible is key to ensuring that interrupts are handled as quickly as possible. AltOS doesn’t use this
form in shared code as other compilers wouldn’t know what to do. Use ao_arch_block_interrupts and
ao_arch_release_interrupts instead.

This document is released under the terms of the Creative Commons ShareAlike 3.0 license. 6

Chapter 3. Task functions
This chapter documents how to create, destroy and schedule AltOS tasks.

3.1. ao_add_task
void
ao_add_task(__xdata struct ao_task * task,
 void (*start)(void),
 __code char *name);

This initializes the statically allocated task structure, assigns a name to it (not used for anything but the
task display), and the start address. It does not switch to the new task. start must not ever return; there
is no place to return to.

3.2. ao_exit
void
ao_exit(void)

This terminates the current task.

3.3. ao_sleep
void
ao_sleep(__xdata void *wchan)

This suspends the current task until wchan is signaled by ao_wakeup, or until the timeout, set by
ao_alarm, fires. If wchan is signaled, ao_sleep returns 0, otherwise it returns 1. This is the only way to
switch to another task.

Because ao_wakeup wakes every task waiting on a particular location, ao_sleep should be used in a
loop that first checks the desired condition, blocks in ao_sleep and then rechecks until the condition
is satisfied. If the location may be signaled from an interrupt handler, the code will need to block
interrupts around the block of code. Here’s a complete example:

ao_arch_block_interrupts();
while (!ao_radio_done)
 ao_sleep(&ao_radio_done);
ao_arch_release_interrupts();

3.4. ao_wakeup
void
ao_wakeup(__xdata void *wchan)

Wake all tasks blocked on wchan. This makes them available to be run again, but does not actually
switch to another task. Here’s an example of using this:

if (RFIF & RFIF_IM_DONE) {
 ao_radio_done = 1;

This document is released under the terms of the Creative Commons ShareAlike 3.0 license. 7

Task functions

 ao_wakeup(&ao_radio_done);
 RFIF &= ~RFIF_IM_DONE;
}

Note that this need not block interrupts as the ao_sleep block can only be run from normal mode, and
so this sequence can never be interrupted with execution of the other sequence.

3.5. ao_alarm
void
ao_alarm(uint16_t delay);

void
ao_clear_alarm(void);

Schedules an alarm to fire in at least delay ticks. If the task is asleep when the alarm fires, it will wakeup
and ao_sleep will return 1. ao_clear_alarm resets any pending alarm so that it doesn’t fire at some
arbitrary point in the future.

ao_alarm(ao_packet_master_delay);
ao_arch_block_interrupts();
while (!ao_radio_dma_done)
if (ao_sleep(&ao_radio_dma_done) != 0)
ao_radio_abort();
ao_arch_release_interrupts();
ao_clear_alarm();

In this example, a timeout is set before waiting for incoming radio data. If no data is received before the
timeout fires, ao_sleep will return 1 and then this code will abort the radio receive operation.

3.6. ao_start_scheduler
void
ao_start_scheduler(void);

This is called from main when the system is all initialized and ready to run. It will not return.

3.7. ao_clock_init
void
ao_clock_init(void);

This initializes the main CPU clock and switches to it.

This document is released under the terms of the Creative Commons ShareAlike 3.0 license. 8

Chapter 4. Timer Functions
AltOS sets up one of the CPU timers to run at 100Hz and exposes this tick as the fundemental unit of
time. At each interrupt, AltOS increments the counter, and schedules any tasks waiting for that time to
pass, then fires off the sensors to collect current data readings. Doing this from the ISR ensures that the
values are sampled at a regular rate, independent of any scheduling jitter.

4.1. ao_time
uint16_t
ao_time(void)

Returns the current system tick count. Note that this is only a 16 bit value, and so it wraps every 655.36
seconds.

4.2. ao_delay
void
ao_delay(uint16_t ticks);

Suspend the current task for at least ticks clock units.

4.3. ao_timer_set_adc_interval
void
ao_timer_set_adc_interval(uint8_t interval);

This sets the number of ticks between ADC samples. If set to 0, no ADC samples are generated. AltOS
uses this to slow down the ADC sampling rate to save power.

4.4. ao_timer_init
void
ao_timer_init(void)

This turns on the 100Hz tick. It is required for any of the time-based functions to work. It should be
called by main before ao_start_scheduler.

This document is released under the terms of the Creative Commons ShareAlike 3.0 license. 9

Chapter 5. AltOS Mutexes
AltOS provides mutexes as a basic synchronization primitive. Each mutexes is simply a byte of memory
which holds 0 when the mutex is free or the task id of the owning task when the mutex is owned. Mutex
calls are checked—attempting to acquire a mutex already held by the current task or releasing a mutex
not held by the current task will both cause a panic.

5.1. ao_mutex_get
void
ao_mutex_get(__xdata uint8_t *mutex);

Acquires the specified mutex, blocking if the mutex is owned by another task.

5.2. ao_mutex_put
void
ao_mutex_put(__xdata uint8_t *mutex);

Releases the specified mutex, waking up all tasks waiting for it.

This document is released under the terms of the Creative Commons ShareAlike 3.0 license. 10

Chapter 6. DMA engine
The CC1111 and STM32L both contain a useful bit of extra hardware in the form of a number of
programmable DMA engines. They can be configured to copy data in memory, or between memory and
devices (or even between two devices). AltOS exposes a general interface to this hardware and uses it
to handle both internal and external devices.

Because the CC1111 and STM32L DMA engines are different, the interface to them is also different. As
the DMA engines are currently used to implement platform-specific drivers, this isn’t yet a problem.

Code using a DMA engine should allocate one at startup time. There is no provision to free them, and if
you run out, AltOS will simply panic.

During operation, the DMA engine is initialized with the transfer parameters. Then it is started, at which
point it awaits a suitable event to start copying data. When copying data from hardware to memory, that
trigger event is supplied by the hardware device. When copying data from memory to hardware, the
transfer is usually initiated by software.

6.1. CC1111 DMA Engine

6.1.1. ao_dma_alloc

uint8_t
ao_dma_alloc(__xdata uint8_t *done)

Allocate a DMA engine, returning the identifier. done is cleared when the DMA is started, and then
receives the AO_DMA_DONE bit on a successful transfer or the AO_DMA_ABORTED bit if ao_dma_abort
was called. Note that it is possible to get both bits if the transfer was aborted after it had finished.

6.1.2. ao_dma_set_transfer

void
ao_dma_set_transfer(uint8_t id,
void __xdata *srcaddr,
void __xdata *dstaddr,
uint16_t count,
uint8_t cfg0,
uint8_t cfg1)

Initializes the specified dma engine to copy data from srcaddr to dstaddr for count units. cfg0 and cfg1
are values directly out of the CC1111 documentation and tell the DMA engine what the transfer unit
size, direction and step are.

6.1.3. ao_dma_start

void
ao_dma_start(uint8_t id);

Arm the specified DMA engine and await a signal from either hardware or software to start transferring
data.

This document is released under the terms of the Creative Commons ShareAlike 3.0 license. 11

DMA engine

6.1.4. ao_dma_trigger

void
ao_dma_trigger(uint8_t id)

Trigger the specified DMA engine to start copying data.

6.1.5. ao_dma_abort

void
ao_dma_abort(uint8_t id)

Terminate any in-progress DMA transaction, marking its done variable with the AO_DMA_ABORTED bit.

6.2. STM32L DMA Engine

6.2.1. ao_dma_alloc

uint8_t ao_dma_done[];

void
ao_dma_alloc(uint8_t index);

Reserve a DMA engine for exclusive use by one driver.

6.2.2. ao_dma_set_transfer

void
ao_dma_set_transfer(uint8_t id,
void *peripheral,
void *memory,
uint16_t count,
uint32_t ccr);

Initializes the specified dma engine to copy data between peripheral and memory for count units. ccr is
a value directly out of the STM32L documentation and tells the DMA engine what the transfer unit size,
direction and step are.

6.2.3. ao_dma_set_isr

void
ao_dma_set_isr(uint8_t index, void (*isr)(int))

This sets a function to be called when the DMA transfer completes in lieu of setting the ao_dma_done
bits. Use this when some work needs to be done when the DMA finishes that cannot wait until user
space resumes.

6.2.4. ao_dma_start

void
ao_dma_start(uint8_t id);

This document is released under the terms of the Creative Commons ShareAlike 3.0 license. 12

DMA engine

Arm the specified DMA engine and await a signal from either hardware or software to start transferring
data. ao_dma_done[index] is cleared when the DMA is started, and then receives the AO_DMA_DONE
bit on a successful transfer or the AO_DMA_ABORTED bit if ao_dma_abort was called. Note that it is
possible to get both bits if the transfer was aborted after it had finished.

6.2.5. ao_dma_done_transfer

void
ao_dma_done_transfer(uint8_t id);

Signals that a specific DMA engine is done being used. This allows multiple drivers to use the same DMA
engine safely.

6.2.6. ao_dma_abort

void
ao_dma_abort(uint8_t id)

Terminate any in-progress DMA transaction, marking its done variable with the AO_DMA_ABORTED bit.

This document is released under the terms of the Creative Commons ShareAlike 3.0 license. 13

Chapter 7. Stdio interface
AltOS offers a stdio interface over USB, serial and the RF packet link. This provides for control of the
device locally or remotely. This is hooked up to the stdio functions by providing the standard putchar/
getchar/flush functions. These automatically multiplex the available communication channels; output is
always delivered to the channel which provided the most recent input.

7.1. putchar
void
putchar(char c)

Delivers a single character to the current console device.

7.2. getchar
char
getchar(void)

Reads a single character from any of the available console devices. The current console device is set to
that which delivered this character. This blocks until a character is available.

7.3. flush
void
flush(void)

Flushes the current console device output buffer. Any pending characters will be delivered to the target
device.

7.4. ao_add_stdio
void
ao_add_stdio(char (*pollchar)(void),
void (*putchar)(char),
void (*flush)(void))

This adds another console device to the available list.

pollchar returns either an available character or AO_READ_AGAIN if none is available. Significantly, it
does not block. The device driver must set ao_stdin_ready to 1 and call ao_wakeup(&ao_stdin_ready)
when it receives input to tell getchar that more data is available, at which point pollchar will be called
again.

putchar queues a character for output, flushing if the output buffer is full. It may block in this case.

flush forces the output buffer to be flushed. It may block until the buffer is delivered, but it is not
required to do so.

This document is released under the terms of the Creative Commons ShareAlike 3.0 license. 14

Chapter 8. Command line interface
AltOS includes a simple command line parser which is hooked up to the stdio interfaces permitting
remote control of the device over USB, serial or the RF link as desired. Each command uses a single
character to invoke it, the remaining characters on the line are available as parameters to the
command.

8.1. ao_cmd_register
void
ao_cmd_register(__code struct ao_cmds *cmds)

This registers a set of commands with the command parser. There is a fixed limit on the number of
command sets, the system will panic if too many are registered. Each command is defined by a struct
ao_cmds entry:

struct ao_cmds {
 char cmd;
 void (*func)(void);
 const char *help;
};

cmd is the character naming the command. func is the function to invoke and help is a string displayed
by the ? command. Syntax errors found while executing func should be indicated by modifying the
global ao_cmd_status variable with one of the following values:

ao_cmd_success

The command was parsed successfully. There is no need to assign this value, it is the default.

ao_cmd_lex_error

A token in the line was invalid, such as a number containing invalid characters. The low-level lexing
functions already assign this value as needed.

ao_syntax_error

The command line is invalid for some reason other than invalid tokens.

8.2. ao_cmd_lex
void
ao_cmd_lex(void);

This gets the next character out of the command line buffer and sticks it into ao_cmd_lex_c. At the end
of the line, ao_cmd_lex_c will get a newline (\n) character.

8.3. ao_cmd_put16
void
ao_cmd_put16(uint16_t v);

This document is released under the terms of the Creative Commons ShareAlike 3.0 license. 15

Command line interface

Writes v as four hexadecimal characters.

8.4. ao_cmd_put8
void
ao_cmd_put8(uint8_t v);

Writes v as two hexadecimal characters.

8.5. ao_cmd_white
void
ao_cmd_white(void)

This skips whitespace by calling ao_cmd_lex while ao_cmd_lex_c is either a space or tab. It does not skip
any characters if ao_cmd_lex_c already non-white.

8.6. ao_cmd_hex
void
ao_cmd_hex(void)

This reads a 16-bit hexadecimal value from the command line with optional leading whitespace. The
resulting value is stored in ao_cmd_lex_i;

8.7. ao_cmd_decimal
void
ao_cmd_decimal(void)

This reads a 32-bit decimal value from the command line with optional leading whitespace. The
resulting value is stored in ao_cmd_lex_u32 and the low 16 bits are stored in ao_cmd_lex_i;

8.8. ao_match_word
uint8_t
ao_match_word(__code char *word)

This checks to make sure that word occurs on the command line. It does not skip leading white space.
If word is found, then 1 is returned. Otherwise, ao_cmd_status is set to ao_cmd_syntax_error and 0 is
returned.

8.9. ao_cmd_init
void
ao_cmd_init(void

Initializes the command system, setting up the built-in commands and adding a task to run the
command processing loop. It should be called by main before ao_start_scheduler.

This document is released under the terms of the Creative Commons ShareAlike 3.0 license. 16

Chapter 9. USB target device
AltOS contains a full-speed USB target device driver. It can be programmed to offer any kind of USB
target, but to simplify interactions with a variety of operating systems, AltOS provides only a single target
device profile, that of a USB modem which has native drivers for Linux, Windows and Mac OS X. It would
be easy to change the code to provide an alternate target device if necessary.

To the rest of the system, the USB device looks like a simple two-way byte stream. It can be hooked into
the command line interface if desired, offering control of the device over the USB link. Alternatively, the
functions can be accessed directly to provide for USB-specific I/O.

9.1. ao_usb_flush

void
ao_usb_flush(void);

Flushes any pending USB output. This queues an IN packet to be delivered to the USB host if there is
pending data, or if the last IN packet was full to indicate to the host that there isn’t any more pending
data available.

9.2. ao_usb_putchar

void
ao_usb_putchar(char c);

If there is a pending IN packet awaiting delivery to the host, this blocks until that has been fetched.
Then, this adds a byte to the pending IN packet for delivery to the USB host. If the USB packet is full, this
queues the IN packet for delivery.

9.3. ao_usb_pollchar

char
ao_usb_pollchar(void);

If there are no characters remaining in the last OUT packet received, this returns AO_READ_AGAIN.
Otherwise, it returns the next character, reporting to the host that it is ready for more data when the
last character is gone.

9.4. ao_usb_getchar

char
ao_usb_getchar(void);

This uses ao_pollchar to receive the next character, blocking while ao_pollchar returns AO_READ_AGAIN.

9.5. ao_usb_disable

void
ao_usb_disable(void);

This document is released under the terms of the Creative Commons ShareAlike 3.0 license. 17

USB target device

This turns off the USB controller. It will no longer respond to host requests, nor return characters.
Calling any of the i/o routines while the USB device is disabled is undefined, and likely to break things.
Disabling the USB device when not needed saves power.

Note that neither TeleDongle v0.2 nor TeleMetrum v1 are able to signal to the USB host that they have
disconnected, so after disabling the USB device, it’s likely that the cable will need to be disconnected
and reconnected before it will work again.

9.6. ao_usb_enable
void
ao_usb_enable(void);

This turns the USB controller on again after it has been disabled. See the note above about needing to
physically remove and re-insert the cable to get the host to re-initialize the USB link.

9.7. ao_usb_init
void
ao_usb_init(void);

This turns the USB controller on, adds a task to handle the control end point and adds the usb I/O
functions to the stdio system. Call this from main before ao_start_scheduler.

This document is released under the terms of the Creative Commons ShareAlike 3.0 license. 18

Chapter 10. Serial peripherals
The CC1111 provides two USART peripherals. AltOS uses one for asynch serial data, generally to
communicate with a GPS device, and the other for a SPI bus. The UART is configured to operate in 8-
bits, no parity, 1 stop bit framing. The default configuration has clock settings for 4800, 9600 and 57600
baud operation. Additional speeds can be added by computing appropriate clock values.

To prevent loss of data, AltOS provides receive and transmit fifos of 32 characters each.

10.1. ao_serial_getchar
char
ao_serial_getchar(void);

Returns the next character from the receive fifo, blocking until a character is received if the fifo is empty.

10.2. ao_serial_putchar
void
ao_serial_putchar(char c);

Adds a character to the transmit fifo, blocking if the fifo is full. Starts transmitting characters.

10.3. ao_serial_drain
void
ao_serial_drain(void);

Blocks until the transmit fifo is empty. Used internally when changing serial speeds.

10.4. ao_serial_set_speed
void
ao_serial_set_speed(uint8_t speed);

Changes the serial baud rate to one of AO_SERIAL_SPEED_4800, AO_SERIAL_SPEED_9600 or
AO_SERIAL_SPEED_57600. This first flushes the transmit fifo using ao_serial_drain.

10.5. ao_serial_init
void
ao_serial_init(void)

Initializes the serial peripheral. Call this from main before jumping to ao_start_scheduler. The default
speed setting is AO_SERIAL_SPEED_4800.

This document is released under the terms of the Creative Commons ShareAlike 3.0 license. 19

Chapter 11. CC1111/CC1120/CC1200 Radio peripheral

11.1. Radio Introduction
The CC1111, CC1120 and CC1200 radio transceiver sends and receives digital packets with forward
error correction and detection. The AltOS driver is fairly specific to the needs of the TeleMetrum and
TeleDongle devices, using it for other tasks may require customization of the driver itself. There are
three basic modes of operation:

1. Telemetry mode. In this mode, TeleMetrum transmits telemetry frames at a fixed rate. The frames are
of fixed size. This is strictly a one-way communication from TeleMetrum to TeleDongle.

2. Packet mode. In this mode, the radio is used to create a reliable duplex byte stream between
TeleDongle and TeleMetrum. This is an asymmetrical protocol with TeleMetrum only transmitting
in response to a packet sent from TeleDongle. Thus getting data from TeleMetrum to TeleDongle
requires polling. The polling rate is adaptive, when no data has been received for a while, the rate
slows down. The packets are checked at both ends and invalid data are ignored.

On the TeleMetrum side, the packet link is hooked into the stdio mechanism, providing an alternate
data path for the command processor. It is enabled when the unit boots up in idle mode.

On the TeleDongle side, the packet link is enabled with a command; data from the stdio package is
forwarded over the packet link providing a connection from the USB command stream to the remote
TeleMetrum device.

1. Radio Direction Finding mode. In this mode, TeleMetrum constructs a special packet that sounds like
an audio tone when received by a conventional narrow-band FM receiver. This is designed to provide
a beacon to track the device when other location mechanisms fail.

11.2. ao_radio_set_telemetry
void
ao_radio_set_telemetry(void);

Configures the radio to send or receive telemetry packets. This includes packet length, modulation
scheme and other RF parameters. It does not include the base frequency or channel though. Those are
set at the time of transmission or reception, in case the values are changed by the user.

11.3. ao_radio_set_packet
void
ao_radio_set_packet(void);

Configures the radio to send or receive packet data. This includes packet length, modulation scheme
and other RF parameters. It does not include the base frequency or channel though. Those are set at
the time of transmission or reception, in case the values are changed by the user.

11.4. ao_radio_set_rdf
void

This document is released under the terms of the Creative Commons ShareAlike 3.0 license. 20

CC1111/CC1120/
CC1200 Radio peripheral

ao_radio_set_rdf(void);

Configures the radio to send RDF packets. An RDF packet is a sequence of hex 0x55 bytes sent at a base
bit rate of 2kbps using a 5kHz deviation. All of the error correction and data whitening logic is turned off
so that the resulting modulation is received as a 1kHz tone by a conventional 70cm FM audio receiver.

11.5. ao_radio_idle

void
ao_radio_idle(void);

Sets the radio device to idle mode, waiting until it reaches that state. This will terminate any in-progress
transmit or receive operation.

11.6. ao_radio_get

void
ao_radio_get(void);

Acquires the radio mutex and then configures the radio frequency using the global radio calibration and
channel values.

11.7. ao_radio_put

void
ao_radio_put(void);

Releases the radio mutex.

11.8. ao_radio_abort

void
ao_radio_abort(void);

Aborts any transmission or reception process by aborting the associated DMA object and calling
ao_radio_idle to terminate the radio operation.

11.9. Radio Telemetry

In telemetry mode, you can send or receive a telemetry packet. The data from receiving a packet also
includes the RSSI and status values supplied by the receiver. These are added after the telemetry data.

11.9.1. ao_radio_send

void
ao_radio_send(__xdata struct ao_telemetry *telemetry);

This sends the specific telemetry packet, waiting for the transmission to complete. The radio must
have been set to telemetry mode. This function calls ao_radio_get() before sending, and ao_radio_put()
afterwards, to correctly serialize access to the radio device.

This document is released under the terms of the Creative Commons ShareAlike 3.0 license. 21

CC1111/CC1120/
CC1200 Radio peripheral

11.9.2. ao_radio_recv

void
ao_radio_recv(__xdata struct ao_radio_recv *radio);

This blocks waiting for a telemetry packet to be received. The radio must have been set to telemetry
mode. This function calls ao_radio_get() before receiving, and ao_radio_put() afterwards, to correctly
serialize access to the radio device. This returns non-zero if a packet was received, or zero if the
operation was aborted (from some other task calling ao_radio_abort()).

11.10. Radio Direction Finding

In radio direction finding mode, there’s just one function to use

11.10.1. ao_radio_rdf

void
ao_radio_rdf(int ms);

This sends an RDF packet lasting for the specified amount of time. The maximum length is 1020 ms.

11.11. Radio Packet Mode

Packet mode is asymmetrical and is configured at compile time for either master or slave mode (but not
both). The basic I/O functions look the same at both ends, but the internals are different, along with the
initialization steps.

11.11.1. ao_packet_putchar

void
ao_packet_putchar(char c);

If the output queue is full, this first blocks waiting for that data to be delivered. Then, queues a
character for packet transmission. On the master side, this will transmit a packet if the output buffer is
full. On the slave side, any pending data will be sent the next time the master polls for data.

11.11.2. ao_packet_pollchar

char
ao_packet_pollchar(void);

This returns a pending input character if available, otherwise returns AO_READ_AGAIN. On the master
side, if this empties the buffer, it triggers a poll for more data.

11.11.3. ao_packet_slave_start

void
ao_packet_slave_start(void);

This is available only on the slave side and starts a task to listen for packet data.

This document is released under the terms of the Creative Commons ShareAlike 3.0 license. 22

CC1111/CC1120/
CC1200 Radio peripheral

11.11.4. ao_packet_slave_stop

void
ao_packet_slave_stop(void);

Disables the packet slave task, stopping the radio receiver.

11.11.5. ao_packet_slave_init

void
ao_packet_slave_init(void);

Adds the packet stdio functions to the stdio package so that when packet slave mode is enabled,
characters will get send and received through the stdio functions.

11.11.6. ao_packet_master_init

void
ao_packet_master_init(void);

Adds the p packet forward command to start packet mode.

This document is released under the terms of the Creative Commons ShareAlike 3.0 license. 23

	AltOS
	Table of Contents
	Chapter 1. Overview
	Chapter 2. AltOS Porting Layer
	2.1. Low-level CPU operations
	2.1.1. ao_arch_block_interrupts/ao_arch_release_interrupts
	2.1.2. ao_arch_save_regs, ao_arch_save_stack, ao_arch_restore_stack
	2.1.3. ao_arch_wait_interupt

	2.2. GPIO operations
	2.2.1. GPIO setup
	ao_enable_output
	ao_enable_input

	2.2.2. Reading and writing GPIO pins
	ao_gpio_set
	ao_gpio_get

	2.3. 8051 memory spaces
	2.3.1. __data
	2.3.2. __idata
	2.3.3. __xdata
	2.3.4. __pdata
	2.3.5. __code
	2.3.6. __bit
	2.3.7. sfr, sfr16, sfr32, sbit

	2.4. Function calls on the 8051
	2.4.1. __reentrant functions
	2.4.2. Non __reentrant functions
	2.4.3. __interrupt functions
	2.4.4. __critical functions and statements

	Chapter 3. Task functions
	3.1. ao_add_task
	3.2. ao_exit
	3.3. ao_sleep
	3.4. ao_wakeup
	3.5. ao_alarm
	3.6. ao_start_scheduler
	3.7. ao_clock_init

	Chapter 4. Timer Functions
	4.1. ao_time
	4.2. ao_delay
	4.3. ao_timer_set_adc_interval
	4.4. ao_timer_init

	Chapter 5. AltOS Mutexes
	5.1. ao_mutex_get
	5.2. ao_mutex_put

	Chapter 6. DMA engine
	6.1. CC1111 DMA Engine
	6.1.1. ao_dma_alloc
	6.1.2. ao_dma_set_transfer
	6.1.3. ao_dma_start
	6.1.4. ao_dma_trigger
	6.1.5. ao_dma_abort

	6.2. STM32L DMA Engine
	6.2.1. ao_dma_alloc
	6.2.2. ao_dma_set_transfer
	6.2.3. ao_dma_set_isr
	6.2.4. ao_dma_start
	6.2.5. ao_dma_done_transfer
	6.2.6. ao_dma_abort

	Chapter 7. Stdio interface
	7.1. putchar
	7.2. getchar
	7.3. flush
	7.4. ao_add_stdio

	Chapter 8. Command line interface
	8.1. ao_cmd_register
	8.2. ao_cmd_lex
	8.3. ao_cmd_put16
	8.4. ao_cmd_put8
	8.5. ao_cmd_white
	8.6. ao_cmd_hex
	8.7. ao_cmd_decimal
	8.8. ao_match_word
	8.9. ao_cmd_init

	Chapter 9. USB target device
	9.1. ao_usb_flush
	9.2. ao_usb_putchar
	9.3. ao_usb_pollchar
	9.4. ao_usb_getchar
	9.5. ao_usb_disable
	9.6. ao_usb_enable
	9.7. ao_usb_init

	Chapter 10. Serial peripherals
	10.1. ao_serial_getchar
	10.2. ao_serial_putchar
	10.3. ao_serial_drain
	10.4. ao_serial_set_speed
	10.5. ao_serial_init

	Chapter 11. CC1111/CC1120/CC1200 Radio peripheral
	11.1. Radio Introduction
	11.2. ao_radio_set_telemetry
	11.3. ao_radio_set_packet
	11.4. ao_radio_set_rdf
	11.5. ao_radio_idle
	11.6. ao_radio_get
	11.7. ao_radio_put
	11.8. ao_radio_abort
	11.9. Radio Telemetry
	11.9.1. ao_radio_send
	11.9.2. ao_radio_recv

	11.10. Radio Direction Finding
	11.10.1. ao_radio_rdf

	11.11. Radio Packet Mode
	11.11.1. ao_packet_putchar
	11.11.2. ao_packet_pollchar
	11.11.3. ao_packet_slave_start
	11.11.4. ao_packet_slave_stop
	11.11.5. ao_packet_slave_init
	11.11.6. ao_packet_master_init

