
 Design Note DN113

 SWRA223 Page 1 of 17

CC111xFx, CC243xFx, and CC251xFx SPI
By Siri Johnsrud and Torgeir Sundet

Keywords

• SPI
• USART
• Master
• Slave
• CC1110Fx

• CC1111Fx
• CC2430Fx
• CC2431Fx
• CC2510Fx
• CC2511Fx

1 Introduction

The purpose of this design note is to
describe how to operate the two USARTs
in synchronous SPI mode, both as a
master and as a slave.

In the following sections, an x in the
register name represents the USART
number 0 or 1 if nothing else is stated. All
code examples use USART1.

 Design Note DN113

 SWRA223 Page 2 of 17

Table of Contents

KEYWORDS.. 1
1 INTRODUCTION... 1
2 ABBREVIATIONS... 2
3 CONFIGURING THE USART FOR SPI MODE.. 3

3.1 I/O PINS .. 3
3.2 BAUD RATE ... 4
3.3 MODE OF OPERATION .. 4
3.4 POLARITY, CLOCK PHASE, AND BIT ORDER ... 4

4 IMPLEMENTING THE CODE ... 6
4.1 MASTER TO SLAVE... 8

4.1.1 Polling of Status Bits ..8
4.1.2 Interrupt Driven Solution ...10
4.1.3 DMA ...11

4.2 SLAVE TO MASTER... 14
4.2.1 Polling of Status Bits ..14

5 REFERENCES.. 16
6 GENERAL INFORMATION .. 17

6.1 DOCUMENT HISTORY.. 17

2 Abbreviations

GPIO General Purpose Input/Output
IC Integrated Circuit
I/O Input/Output
ISR Interrupt Service Routine
LSB Least Significant Bit
MISO Master In Slave Out
MOSI Master Out Slave In
MSB Most Significant Bit
RX Receive. Used in this document to reference SPI receive.
SoC System on Chip. A collective term used to refer to Texas Instruments

ICs with on-chip MCU and RF transceiver. Used in this document to
reference the CC1110Fx, CC1111Fx, CC2430Fx, CC2431Fx,
CC2510Fx and CC2511Fx

SPI Serial Peripheral Interface
TX Transmit. Used in this document to reference SPI transmit
USART Universal Synchronous/Asynchronous Receiver/Transmitter

 Design Note DN113

 SWRA223 Page 3 of 17

3 Configuring the USART for SPI Mode

There are several things that need to be set up correctly before the USART can be used in
SPI mode, and these things are described in the following sections.

3.1 I/O Pins

When used in SPI mode, both USARTs can choose between two alternative locations for its
I/O pins (see Table 1).

USART0 USART1

Pin Signal Setting Pin Signal Setting

P0_4 SSN P0_2 SSN

P0_5 SCK P0_3 SCK

P0_3 MOSI P0_4 MOSI

Alternative 1

P0_2 MISO

PERCFG.U0CFG = 0

P0_5 MISO

PERCFG.U1CFG = 0

P1_2 SSN P1_4 SSN

P1_3 SCK P1_5 SCK

P1_5 MOSI P1_6 MOSI

Alternative 2

P1_4 MISO

PERCFG.U0CFG = 1

P1_7 MISO

PERCFG.U1CFG = 1

Table 1. I/O Location

Next one needs to configure the I/O pins on the selected location (alternative 1 or 2) to be
peripheral I/O pins. This is done through the PxSEL registers, by setting PxSEL.SELPx_n =
1 (x = 0, 1, or 2 and indicates the port number, while n = 0, 1, 2, .., 7 and indicates the pin
number).

Note: In SPI master mode, only the MOSI, MISO, and SCK should be configured as
peripheral I/Os. If the external slave requires a slave select signal (SSN) then a GPIO should
be configured as output on the Master to control the SSN.

The code below shows how both a master and a slave unit are configured to map USART1 to
its alternative 2 location.

// Master Mode
PERCFG |= 0x02; // PERCFG.U1CFG = 1
P1SEL |= 0xE0; // P1_7, P1_6, and P1_5 are peripherals
P1SEL &= ~0x10; // P1_4 is GPIO (SSN)
P1DIR |= 0x10; // SSN is set as output

// Slave Mode
PERCFG |= 0x02; // PERCFG.U1CFG = 1
P1SEL |= 0xF0; // P1_7, P1_6, P1_5, and P1_4 are peripherals
/*--
 Master Slave
------------- -------------
P1_4 SSN	--------->	SSN P1_4
P1_5 SCK	--------->	SCK P1_5
P1_6 MOSI	--------->	MOSI P1_6
P1_7 MISO	<---------	MISO P1_7
------------- -------------
--*/

 Design Note DN113

 SWRA223 Page 4 of 17

3.2 Baud Rate

The SPI master clock frequency is set up by an internal baud rate generator, meaning that
Timer 1, Timer 2, Timer 3, and Timer 4, can be used for other purposes. The SCK frequency
is given by Equation 1, where F is the system clock frequency and BAUD_M and BAUD_E can
be found in UxBAUD and Ux0GCR respectively.

() FMBAUDf
EBAUD

SCK ⋅
⋅+

= 28

_

2
2_256

Equation 1. SCK Frequency

The maximum baud rate and thus SCK frequency is F/8.

Note: If the SPI master does not need to receive data, the maximum baud rate can be
increased to F/2.

Maximum baud rate (F/8) can be achieved by setting BAUD_M = 0 and BAUD_E = 17.

Note: The baud rate must never be changed during a transfer (i.e when UxCSR.ACTIVE is
asserted).

3.3 Mode of Operation

To configure USARTx to operate in SPI mode, UxCSR.MODE must be set to 0. UxCSR.SLAVE
should be 0 for master mode and 1 for slave mode.

3.4 Polarity, Clock Phase, and Bit Order

The phase and polarity of SCK is configured through UxGCR.CPHA and UxGCR.CPOL (see
Table 2).

 Register Setting Comment
0 SCK low when idle UxGCR.CPOL
1 SCK high when idle
0 Data centered on first edge of SCK period UxGCR.CPHA
1 Data centered on second edge of SCK period

Table 2. SCK Phase and Polarity

// SPI Slave Mode
U1CSR &= ~0x80;
U1CSR |= 0x20;

// SPI Master Mode
U1CSR &= ~0xA0;

// Set baud rate to max (system clock frequency / 8)
// Assuming a 26 MHz crystal (CC1110Fx/CC2510Fx),
// max baud rate = 26 MHz / 8 = 3.25 MHz.
U1BAUD = 0x00; // BAUD_M = 0
U1GCR |= 0x11; // BAUD_E = 17

 Design Note DN113

 SWRA223 Page 5 of 17

The transfer bit order is configured by setting UxGCR.ORDER = 0 for LSB first and
UxGCR.ORDER = 1 for MSB first. Figure 1 shows the SCK signal for the different phase and
polarity configurations in addition to MOSI and MISO, for both UxGCR.ORDER = 0 and
UxGCR.ORDER = 1.

Figure 1. Phase, Polarity, and Bit Order

The code example below show how the SPI should be configured for negative clock polarity,
data centered on second edge of SCK, and transferring MSB first.

// Configure phase, polarity, and bit order
U1GCR &= ~0xC0; // CPOL = CPHA = 0
U1GCR |= 0x20; // ORDER = 1

/*---
 ---- ---- ---- ---- ---- ---- ---- ---- ----
 | | | | | | | | | | | | | | | | | |
---- ---- ---- ---- ---- ---- ---- ---- ---- ----
--
 | MSB | | | | | | | | LSB |
--
---*/

 Design Note DN113

 SWRA223 Page 6 of 17

4 Implementing the Code

In this section, different methods of sending data from master to slave and from slave to
master will be discussed and code examples will be shown. In all the following examples, the
data to be transferred are shown in Figure 2. Assume that both slave and master have one
buffer for data to be transmitted and one for data to be received. These buffers are called
rxBufferSlave, txBufferSlave, rxBufferMaster, and txBufferMaster and are all 10 bytes wide. It
is also assumed that USART1 has been initialized as shown in the previous code examples.
Four different software flags are also implemented in the code; mDataTransmitted,
mDataReceived, sDataTransmitted, and sDataReceived.

Figure 2. Data to be Transferred between Master and Slave

Note:

SPI communication means that the slave is clocked by the master. An important
implication of this is that the slave must complete its access (write/read) to the data buffer
(for the SoC this means UxDBUF) within the frame/byte gap of the master. Otherwise the
slave risks loosing data in RX or re-transmitting data in TX. For example, assuming a
slave to master transmission, if the slave then fails to update (write) UxDBUF in time before
the master starts clocking the next frame/byte, then the “old” slave UxDBUF contents will
be clocked out on the MISO line. This particular concern must be carefully reviewed when
choosing implementation of slave RX/TX method, that is; polling of SPI status bits, SPI
ISR, or DMA.

For an SoC slave it is recommended to use a designated DMA channel to handle SPI
RX/TX, as this guarantees fastest possible transfer of data between the SoC memory and
UxDBUF. Using SPI ISR implies that the SoC CPU must jump to the SPI ISR upon each
enabled SPI interrupt request. This adds SPI processing time on the slave, and
consequently the slave needs the master to adjust the frame/byte gap accordingly. The
same limitation applies on the slave for polling-based SPI RX/TX. However, since polling it
self does not execute jump instructions, this method typically allows somewhat shorter
byte/frame gaps than for SPI ISR method. In general, if nothing interrupts the SPI
ISR/polling method, then it is possible to determine/estimate the required byte/frame gap
which should be applied by the master.

 Design Note DN113

 SWRA223 Page 7 of 17

Sections 4.1, 4.1.2, and 4.1.3 will show how data are written by the master and read by the
slave. The following defines are included in the code:

// Define basic data types:
typedef unsigned char BYTE;
typedef unsigned short WORD;
typedef unsigned char UINT8;

// Define data structure for DMA descriptor:
typedef struct {
 unsigned char SRCADDRH; // High byte of the source address
 unsigned char SRCADDRL; // Low byte of the source address
 unsigned char DESTADDRH; // High byte of the destination address
 unsigned char DESTADDRL; // Low byte of the destination address
 unsigned char VLEN : 3; // Length configuration
 unsigned char LENH : 5; // High byte of fixed length
 unsigned char LENL : 8; // Low byte of fixed length
 unsigned char WORDSIZE : 1; // Number of bytes per transfer element
 unsigned char TMODE : 2; // DMA trigger mode (e.g. single or repeated)
 unsigned char TRIG : 5; // DMA trigger; SPI RX/TX
 unsigned char SRCINC : 2; // Number of source address increments
 unsigned char DESTINC : 2; // Number of destination address increments
 unsigned char IRQMASK : 1; // DMA interrupt mask
 unsigned char M8 : 1; // Number of desired bit transfers in byte mode
 unsigned char PRIORITY : 2; // The DMA memory access priority
} DMA_DESC;

// Define masks, fixed values, etc.
#define DMAIF0 0x01 // Bit mask for DMA channel 0 interrupt flag (DMAIRQ)
#define DMAARM0 0x01 // Bit mask for DMA arm channel 0 bit (DMAARM)
#define ABORT 0x80 // Bit mask for DMA abort bit (DMAARM)
#define UTX1IF 0x40 // Bit mask for USART1 TX interrupt flag (IRCON2)
#define URX1IF 0x80 // Bit mask for USART1 RX interrupt flag (TCON)
#define SSN P1_4
#define LOW 0
#define HIGH 1
#define N 9 // Length byte
#define TRUE 1
#define FALSE 0

// Define macro for splitting 16 bits in 2 x 8 bits:
#define HIBYTE(a) (BYTE) ((WORD)(a) >> 8)
#define LOBYTE(a) (BYTE) (WORD)(a)
#define SET_WORD(regH, regL, word) \
 do { \
 (regH) = HIBYTE(word); \
 (regL) = LOBYTE(word); \
 } while(0)

 Design Note DN113

 SWRA223 Page 8 of 17

4.1 Master to Slave

Master is going to transmit (write) 10 bytes to the slave.

4.1.1 Polling of Status Bits

4.1.1.1 UxCSR.UxTX_BYTE and UxCSR.UxRX_BYTE

In master mode, the assertion of the UxCSR.TX_BYTE bit can be used as an indication on
when new data can be written to UxDBUF. In slave mode, the assertion of UxCSR.RX_BYTE
indicates that UxDBUF can be read.

// SPI Slave
for (i = 0; i <= N; i++)
{
 while (!U1RX_BYTE);
 U1RX_BYTE = 0;
 rxBufferSlave[i] = U1DBUF;
}
sDataReceived = TRUE;

// SPI Master (SSN is only necessary if the slave requires a slave select signal)

// Method 1; SSN kept low during the transfer of all 10 bytes
SSN = LOW;
for (i = 0; i <= N; i++)
{
 U1DBUF = txBufferMaster[i];
 while (!U1TX_BYTE);
 U1TX_BYTE = 0;
}
SSN = HIGH;
mDataTransmitted = TRUE;

// or

// Method 2; SSN pulled high between every single byte
for (i = 0; i <= N; i++)
{
 SSN = LOW;
 U1DBUF = txBufferMaster[i];
 while (!U1TX_BYTE);
 SSN = HIGH;
 U1TX_BYTE = 0;
}
mDataTransmitted = TRUE;

 Design Note DN113

 SWRA223 Page 9 of 17

4.1.1.2 UxCSR.ACTIVE

In master mode, UxCSR.ACTIVE is asserted when a byte transfer is initiated (i.e. when the
UxDBUF register is written) and de-asserted when it ends. In slave mode, the UxCSR.ACTIVE
bit is asserted when SSN is pulled low and de-asserted when it is pulled high again. This
means that if polling of the UxCSR.ACTIVE bit should be used in slave mode, the master
must pull SSN high in between every byte transferred.

// SPI Slave (For this approach to work, SSN must be pulled high in between every
// byte that is transferred)

for (i = 0; i <= N; i++)
{
 while (!U1ACTIVE); // Wait for U1ACTIVE to be asserted (SSN pulled low)
 while (U1ACTIVE); // Wait for U1ACTIVE to be de-asserted (SSN pulled high)
 rxBufferSlave[i] = U1DBUF;
}
sDataReceived = TRUE;

// SPI Master (SSN is only necessary if the slave requires a slave select signal)

// Method 1; SSN kept low during the transfer of all 10 bytes
SSN = LOW;
for (i = 0; i <= N; i++)
{
 U1DBUF = txBufferMaster[i]; // U1ACTIVE is asserted
 while (U1ACTIVE); // Wait for U1ACTIVE to be de-asserted
}
SSN = HIGH;
mDataTransmitted = TRUE;

// or

// Method 2; SSN pulled high between every single byte
for (i = 0; i <= N; i++)
{
 SSN = LOW;
 U1DBUF = txBufferMaster[i]; // U1ACTIVE is asserted
 while (U1ACTIVE); // Wait for U1ACTIVE to be de-asserted
 SSN = HIGH;
}
mDataTransmitted = TRUE;

 Design Note DN113

 SWRA223 Page 10 of 17

4.1.2 Interrupt Driven Solution

It is not possible to use an interrupt based solution in master mode, as there are some issues
related to the USARTx TX complete CPU interrupt flag (IRCON2.UTXxIF). Please see the
data sheets for more details ([1], [2], and [3]). In slave mode, the USARTx RX complete CPU
interrupt flag, TCON.URXxIF, is asserted when the received data byte is available in UxDBUF.

Note: The interval between data bytes sent from the master to the slave must be long enough
for the slave’s ISR to complete before a new interrupt request is being generated.

//---
// 1. Clear interrupt flags
// For pulsed or edge shaped interrupt sources one should clear the CPU interrupt
// flag prior to clearing the module interrupt flag
TCON &= ~URX1IF;

// 2. Set individual interrupt enable bit in the peripherals SFR, if any

// 3. Set the corresponding individual, interrupt enable bit in the IEN0, IEN1, or
// IEN2 registers to 1
URX1IE = 1;

// 4. Enable global interrupt
EA = 1;
//---

//---
#pragma vector=URX1_VECTOR
__interrupt void urx1_IRQ(void)
{
 static UINT8 bufferIndex = 0;
 TCON &= ~URX1IF; // Clear the CPU URX1IF interrupt flag
 rxBufferSlave[bufferIndex++] = U1DBUF;
 if (bufferIndex == (N + 1))
 {
 bufferIndex = 0;
 sDataReceived = TRUE;
 }
}
//---

//---
while (condition)
{
 if (sDataReceived)
 {
 // All 10 bytes are received
 sDataReceived = FALSE;
 }
 // Implement code to execute while waiting for the 10 bytes to be received
 // .
 // .
 // .
}
//---

 Design Note DN113

 SWRA223 Page 11 of 17

4.1.3 DMA

It is also possible to use the DMA to move data to and from UxDBUF and this is the only
method which allow for back-to-back transfers. There are two DMA triggers associated with
each USART (URX0, UTX0, URX1, and UTX1). The DMA triggers are activated by the same
events that might generate USART interrupt requests. Even though there is an issue related
to the USARTx TX complete CPU interrupt flag, the only limitation related to using the URX0
and URX1 is that the UxGDR.CPHA bit must be set to zero.
If IRQMASK = 1, the CPU interrupt flag IRCON.DMAIF will be asserted when the transfer
count is reached and an interrupt request will be generated if the corresponding CPU
interrupt mask bit, IEN1.DMAIE, is 1.

The first UTXx DMA trigger event does not occur before a byte is written to UxDBUF. Since
the DMA does not write to UxDBUF before it gets a trigger event, it is necessary to manually
trigger the DMA by setting DMAREQ.DMAREQn = 1 after the DMA has been armed by setting
DMAARM.DMAARMn = 1 (n is the DMA channel number). The remaing 9 trigger events will be
generated automatically by the USART when UxDBUF is ready to be loaded with new data.

Note: When the transfer count is reached (in the code below that will be when all 10 bytes
have been written to UxDBUF), the transfer of byte number 10 is not yet completed. It is
therefore necessary to wait for UxCSR.ACTIVE to be de-asserted before pulling SSN high.

 Design Note DN113

 SWRA223 Page 12 of 17

// SPI Master
//---
DMA_DESC __xdata dmaConfigTx;

SET_WORD(dmaConfigTx.SRCADDRH, dmaConfigTx.SRCADDRL, txBufferMaster);
SET_WORD(dmaConfigTx.DESTADDRH, dmaConfigTx.DESTADDRL, &X_U1DBUF);
dmaConfigTx.VLEN = 1; // Transfer number of bytes commanded by n, + 1
SET_WORD(dmaConfigTx.LENH, dmaConfigTx.LENL, N + 1); //LEN = nmax + 1
dmaConfigTx.WORDSIZE = 0; // Each transfer is 8 bits
dmaConfigTx.TRIG = 17; // Use UTX1 trigger
dmaConfigTx.TMODE = 0; // One byte transferred per trigger event
dmaConfigTx.SRCINC = 1; // Increase source addr. by 1 between transfers
dmaConfigTx.DESTINC = 0; // Keep the same dest. addr. for all transfers
dmaConfigTx.IRQMASK = 1; // Allow IRCON.DMAIF to be asserted when the transfer
 // count is reached
dmaConfigTx.M8 = 0; // Use all 8 bits of first byte in source data to
 // determine the transfer count
dmaConfigTx.PRIORITY = 2; // DMA memory access has high priority

// Save pointer to the DMA config. struct into DMA ch. 0 config. registers
SET_WORD(DMA0CFGH, DMA0CFGL, &dmaConfigTx);
//---

//---
// 1. Clear interrupt flags
// For pulsed or edge shaped interrupt sources one should clear the CPU interrupt
// flag prior to clearing the module interrupt flag
DMAIF = 0;
DMAIRQ &= ~DMAIF0;

// 2. Set individual interrupt enable bit in the peripherals SFR, if any
// No flag for the DMA (Set in the DMA struct (IRQMASK = 1))

// 3. Set the corresponding individual, interrupt enable bit in the IEN0, IEN1, or
// IEN2 registers to 1
DMAIE = 1;

// 4. Enable global interrupt
EA = 1;
//---

//---
#pragma vector=DMA_VECTOR
__interrupt void dma_IRQ(void)
{
 DMAIF = 0; // Clear the CPU DMA interrupt flag
 DMAIRQ &= ~DMAIF0; // DMA channel 0 module interrupt flag
 while (U1ACTIVE); // Wait for the transfer to complete (the last byte
 // transfer is not complete even if transfer count is
 // reached)
 mDataTransmitted = TRUE; // All 10 bytes are transmitted
}
//---

//---
DMAARM = DMAARM0; // Arm DMA channel 0
SSN = LOW;
DMAREQ = 0x01;

while (condition)
{
 if (mDataTransmitted)
 {
 SSN = HIGH; // All 10 bytes are sent so SSN is pulled high again
 mDataTransmitted = FALSE;
 }
 // Implement code to execute while waiting for the 10 bytes to be transmitted
 // .
 // .
 // .
}
//---

 Design Note DN113

 SWRA223 Page 13 of 17

Since the SSN signal must be asserted and de-asserted by the application and is not handled
by the USART (master mode), it does only make sense to use the DMA in master mode in
cases where several bytes shall be transferred in a row without pulling SSN high between
every byte transfer.

// SPI Slave
//---
DMA_DESC __xdata dmaConfigRx;

SET_WORD(dmaConfigRx.SRCADDRH, dmaConfigRx.SRCADDRL, &X_U1DBUF);
SET_WORD(dmaConfigRx.DESTADDRH, dmaConfigRx.DESTADDRL, rxBufferSlave);
dmaConfigRx.VLEN = 1; // Transfer number of bytes commanded by n, + 1
SET_WORD(dmaConfigRx.LENH, dmaConfigRx.LENL, N + 1); //LEN = nmax + 1
dmaConfigRx.WORDSIZE = 0; // Each transfer is 8 bits
dmaConfigRx.TRIG = 16; // Use URX1 trigger
dmaConfigRx.TMODE = 0; // One byte transferred per trigger event
dmaConfigRx.SRCINC = 0; // Keep the same source addr. for all transfers
dmaConfigRx.DESTINC = 1; // Increase dest. addr. by 1 between transfers
dmaConfigRx.IRQMASK = 1; // Allow IRCON.DMAIF to be asserted when the transfer
 // count is reached
dmaConfigRx.M8 = 0; // Use all 8 bits of first byte in source data to
 // determine the transfer count
dmaConfigRx.PRIORITY = 2; // DMA memory access has high priority

// Save pointer to the DMA config. struct into DMA ch. 0 config. registers
SET_WORD(DMA0CFGH, DMA0CFGL, &dmaConfigRx);
//---

//---
// 1. Clear interrupt flags
// For pulsed or edge shaped interrupt sources one should clear the CPU interrupt
// flag prior to clearing the module interrupt flag
DMAIF = 0;
DMAIRQ &= ~DMAIF0;

// 2. Set individual interrupt enable bit in the peripherals SFR, if any
// No flag for the DMA (Set in the DMA struct (IRQMASK = 1))

// 3. Set the corresponding individual, interrupt enable bit in the IEN0, IEN1, or
// IEN2 registers to 1
DMAIE = 1;

// 4. Enable global interrupt
EA = 1;
//---

//---
#pragma vector=DMA_VECTOR
__interrupt void dma_IRQ(void)
{
 DMAIF = 0; // Clear the CPU DMA interrupt flag
 DMAIRQ &= ~DMAIF0; // DMA channel 0 module interrupt flag
 sDataReceived = TRUE; // All 10 bytes are received
}
//---

//---
DMAARM = DMAARM0; // Arm DMA channel 0

while (condition)
{
 if (sDataReceived)
 sDataReceived = FALSE; // All 10 bytes are received

 // Implement code to execute while waiting for the 10 bytes to be received
 // .
 // .
 // .
}

 Design Note DN113

 SWRA223 Page 14 of 17

4.2 Slave to Master

Master is going to receive (read) 10 bytes from the slave.

4.2.1 Polling of Status Bits

4.2.1.1 UxCSR.UxTX_BYTE and UxCSR.UxRX_BYTE

In master mode, the assertion of the UxCSR.TX_BYTE bit can be used as an indication on
when data can be read from UxDBUF. In slave mode, the assertion of UxCSR.RX_BYTE
indicates that a new byte can be written to UxDBUF.

// SPI Slave
for (i = 0; i <= N; i++)
{
 U1DBUF = txBufferSlave[i];
 while (!U1RX_BYTE);
 U1RX_BYTE = 0;
}
sDataTransmitted = TRUE;

// SPI Master (SSN is only necessary if the slave requires a slave select signal)

// Method 1; SSN kept low during the transfer of all 10 bytes
SSN = LOW;
for (i = 0; i <= N; i++)
{
 U1DBUF = dummyByte;
 while (!U1TX_BYTE);
 rxBufferMaster[i] = U1DBUF;
 U1TX_BYTE = 0;
}
SSN = HIGH;
mDataReceived = TRUE;

// or

// Method 2; SSN pulled high between every single byte
for (i = 0; i <= N; i++)
{
 SSN = LOW;
 U1DBUF = dummyByte;
 while (!U1TX_BYTE);
 rxBufferMaster[i] = U1DBUF;
 SSN = HIGH;
 U1TX_BYTE = 0;
}
mDataReceived = TRUE;

 Design Note DN113

 SWRA223 Page 15 of 17

4.2.1.2 UxCSR.ACTIVE

In master mode, UxCSR.ACTIVE is asserted when a byte transfer is initiated (i.e. when the
UxDBUF register is written) and de-asserted when it ends. In slave mode, the UxCSR.ACTIVE
bit is asserted when SSN is pulled low and de-asserted when it is pulled high again. When
the slave is going to write a byte to the master, the data must be written to UxDBUF before
SSN is pulled low. One should therefore think that it would be possible to implement the
following code to write 10 bytes from slave to master, but that is not the case.

Due to the double buffering of UxDBUF and the way the content of this register is moved to an
internal shift register, one might risk transmitting the same byte twice. The ACIVE bit should
therefore not be used in slave mode to determine when a new byte can be written to UxDBUF.

The code for how the ACTIVE bit can be used in master mode when reading a byte from the
slave is shown below.

for (i = 0; i <= N; i++)
{
 U1DBUF = txBufferSlave[i];
 while (!U1ACTIVE); // Wait for U1ACTIVE to be asserted (SSN pulled low)
 while (U1ACTIVE); // Wait for U1ACTIVE to be de-asserted (SSN pulled high)
}
sDataTransmitted = TRUE;

// SPI Master (SSN is only necessary if the slave requires a slave select signal)

// Method 1; SSN kept low during the transfer of all 10 bytes
SSN = LOW;
for (i = 0; i <= N; i++)
{
 U1DBUF = dummyByte; // U1ACTIVE is asserted
 while (U1ACTIVE); // Wait for U1ACTIVE to be de-asserted (U1DBUF can be read)
 rxBufferMaster[i] = U1DBUF;
}
SSN = HIGH;
mDataReceived = TRUE;

// or

// Method 2; SSN pulled high between every single byte
for (i = 0; i <= N; i++)
{
 SSN = LOW;
 U1DBUF = dummyByte; // U1ACTIVE is asserted
 while (U1ACTIVE); // Wait for U1ACTIVE to be de-asserted (U1DBUF can be read)
 rxBufferMaster[i] = U1DBUF;
 SSN = HIGH;
}
mDataReceived = TRUE;

 Design Note DN113

 SWRA223 Page 16 of 17

5 References

[1] CC1110Fx/CC1111Fx Low-Power SoC (System-on-Chip) with MCU, Memory, Sub-1
GHz RF Transceiver, and USB Controller (cc1110f32.pdf)

[2] CC2510Fx/CC2511Fx Low-Power SoC (System-on-Chip) with MCU, Memory, 2.4 GHz
RF Transceiver, and USB Controller (cc2510f32.pdf)

[3] CC2430 A True System-on-Chip solution for 2.4 GHz IEEE 802.15.4 / ZigBee®
(cc2430.pdf)

http://www.ti.com/lit/swrs033
http://www.ti.com/lit/swrs055
http://www.ti.com/lit/swrs036

 Design Note DN113

 SWRA223 Page 17 of 17

6 General Information

6.1 Document History
Revision Date Description/Changes
SWRA223 2008.08.16 Initial release.

IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:
Products Applications
Amplifiers amplifier.ti.com Audio www.ti.com/audio
Data Converters dataconverter.ti.com Automotive www.ti.com/automotive
DSP dsp.ti.com Broadband www.ti.com/broadband
Clocks and Timers www.ti.com/clocks Digital Control www.ti.com/digitalcontrol
Interface interface.ti.com Medical www.ti.com/medical
Logic logic.ti.com Military www.ti.com/military
Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork
Microcontrollers microcontroller.ti.com Security www.ti.com/security
RFID www.ti-rfid.com Telephony www.ti.com/telephony
RF/IF and ZigBee® Solutions www.ti.com/lprf Video & Imaging www.ti.com/video

Wireless www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2008, Texas Instruments Incorporated

http://amplifier.ti.com
http://www.ti.com/audio
http://dataconverter.ti.com
http://www.ti.com/automotive
http://dsp.ti.com
http://www.ti.com/broadband
http://www.ti.com/clocks
http://www.ti.com/digitalcontrol
http://interface.ti.com
http://www.ti.com/medical
http://logic.ti.com
http://www.ti.com/military
http://power.ti.com
http://www.ti.com/opticalnetwork
http://microcontroller.ti.com
http://www.ti.com/security
http://www.ti-rfid.com
http://www.ti.com/telephony
http://www.ti.com/lprf
http://www.ti.com/video
http://www.ti.com/wireless

	Introduction
	Abbreviations
	Configuring the USART for SPI Mode
	I/O Pins
	Baud Rate
	Mode of Operation
	Polarity, Clock Phase, and Bit Order

	Implementing the Code
	Master to Slave
	Polling of Status Bits
	UxCSR.UxTX_BYTE and UxCSR.UxRX_BYTE
	UxCSR.ACTIVE

	Interrupt Driven Solution
	DMA

	Slave to Master
	Polling of Status Bits
	UxCSR.UxTX_BYTE and UxCSR.UxRX_BYTE
	UxCSR.ACTIVE

	References
	General Information
	Document History

