X-Git-Url: https://git.gag.com/?p=fw%2Faltos;a=blobdiff_plain;f=src%2Fmath%2Ffdlibm.h;fp=src%2Fmath%2Ffdlibm.h;h=0000000000000000000000000000000000000000;hp=ee9fcb220dd54240053549dbc6d3965126ddc306;hb=0686a7b8aec524d81bda4c572549a3a068ce0eed;hpb=6aa451ce81bfdfe679e3f9902043a5f0d235c745 diff --git a/src/math/fdlibm.h b/src/math/fdlibm.h deleted file mode 100644 index ee9fcb22..00000000 --- a/src/math/fdlibm.h +++ /dev/null @@ -1,414 +0,0 @@ - -/* @(#)fdlibm.h 5.1 93/09/24 */ -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -/* AltOS local */ -#include -#include -#define __int32_t int32_t -#define __uint32_t uint32_t - -#define __ieee754_acosf acosf -#define __ieee754_sqrtf sqrtf -#define __ieee754_logf logf - -/* REDHAT LOCAL: Include files. */ -#include -/* #include */ -#include - -/* REDHAT LOCAL: Default to XOPEN_MODE. */ -#define _XOPEN_MODE - -/* Most routines need to check whether a float is finite, infinite, or not a - number, and many need to know whether the result of an operation will - overflow. These conditions depend on whether the largest exponent is - used for NaNs & infinities, or whether it's used for finite numbers. The - macros below wrap up that kind of information: - - FLT_UWORD_IS_FINITE(X) - True if a positive float with bitmask X is finite. - - FLT_UWORD_IS_NAN(X) - True if a positive float with bitmask X is not a number. - - FLT_UWORD_IS_INFINITE(X) - True if a positive float with bitmask X is +infinity. - - FLT_UWORD_MAX - The bitmask of FLT_MAX. - - FLT_UWORD_HALF_MAX - The bitmask of FLT_MAX/2. - - FLT_UWORD_EXP_MAX - The bitmask of the largest finite exponent (129 if the largest - exponent is used for finite numbers, 128 otherwise). - - FLT_UWORD_LOG_MAX - The bitmask of log(FLT_MAX), rounded down. This value is the largest - input that can be passed to exp() without producing overflow. - - FLT_UWORD_LOG_2MAX - The bitmask of log(2*FLT_MAX), rounded down. This value is the - largest input than can be passed to cosh() without producing - overflow. - - FLT_LARGEST_EXP - The largest biased exponent that can be used for finite numbers - (255 if the largest exponent is used for finite numbers, 254 - otherwise) */ - -#ifdef _FLT_LARGEST_EXPONENT_IS_NORMAL -#define FLT_UWORD_IS_FINITE(x) 1 -#define FLT_UWORD_IS_NAN(x) 0 -#define FLT_UWORD_IS_INFINITE(x) 0 -#define FLT_UWORD_MAX 0x7fffffff -#define FLT_UWORD_EXP_MAX 0x43010000 -#define FLT_UWORD_LOG_MAX 0x42b2d4fc -#define FLT_UWORD_LOG_2MAX 0x42b437e0 -#define HUGE ((float)0X1.FFFFFEP128) -#else -#define FLT_UWORD_IS_FINITE(x) ((x)<0x7f800000L) -#define FLT_UWORD_IS_NAN(x) ((x)>0x7f800000L) -#define FLT_UWORD_IS_INFINITE(x) ((x)==0x7f800000L) -#define FLT_UWORD_MAX 0x7f7fffffL -#define FLT_UWORD_EXP_MAX 0x43000000 -#define FLT_UWORD_LOG_MAX 0x42b17217 -#define FLT_UWORD_LOG_2MAX 0x42b2d4fc -#define HUGE ((float)3.40282346638528860e+38) -#endif -#define FLT_UWORD_HALF_MAX (FLT_UWORD_MAX-(1L<<23)) -#define FLT_LARGEST_EXP (FLT_UWORD_MAX>>23) - -/* Many routines check for zero and subnormal numbers. Such things depend - on whether the target supports denormals or not: - - FLT_UWORD_IS_ZERO(X) - True if a positive float with bitmask X is +0. Without denormals, - any float with a zero exponent is a +0 representation. With - denormals, the only +0 representation is a 0 bitmask. - - FLT_UWORD_IS_SUBNORMAL(X) - True if a non-zero positive float with bitmask X is subnormal. - (Routines should check for zeros first.) - - FLT_UWORD_MIN - The bitmask of the smallest float above +0. Call this number - REAL_FLT_MIN... - - FLT_UWORD_EXP_MIN - The bitmask of the float representation of REAL_FLT_MIN's exponent. - - FLT_UWORD_LOG_MIN - The bitmask of |log(REAL_FLT_MIN)|, rounding down. - - FLT_SMALLEST_EXP - REAL_FLT_MIN's exponent - EXP_BIAS (1 if denormals are not supported, - -22 if they are). -*/ - -#ifdef _FLT_NO_DENORMALS -#define FLT_UWORD_IS_ZERO(x) ((x)<0x00800000L) -#define FLT_UWORD_IS_SUBNORMAL(x) 0 -#define FLT_UWORD_MIN 0x00800000 -#define FLT_UWORD_EXP_MIN 0x42fc0000 -#define FLT_UWORD_LOG_MIN 0x42aeac50 -#define FLT_SMALLEST_EXP 1 -#else -#define FLT_UWORD_IS_ZERO(x) ((x)==0) -#define FLT_UWORD_IS_SUBNORMAL(x) ((x)<0x00800000L) -#define FLT_UWORD_MIN 0x00000001 -#define FLT_UWORD_EXP_MIN 0x43160000 -#define FLT_UWORD_LOG_MIN 0x42cff1b5 -#define FLT_SMALLEST_EXP -22 -#endif - -#ifdef __STDC__ -#undef __P -#define __P(p) p -#else -#define __P(p) () -#endif - -/* - * set X_TLOSS = pi*2**52, which is possibly defined in - * (one may replace the following line by "#include ") - */ - -#define X_TLOSS 1.41484755040568800000e+16 - -/* Functions that are not documented, and are not in . */ - -#ifdef _SCALB_INT -extern double scalb __P((double, int)); -#else -extern double scalb __P((double, double)); -#endif -extern double significand __P((double)); - -/* ieee style elementary functions */ -extern double __ieee754_sqrt __P((double)); -extern double __ieee754_acos __P((double)); -extern double __ieee754_acosh __P((double)); -extern double __ieee754_log __P((double)); -extern double __ieee754_atanh __P((double)); -extern double __ieee754_asin __P((double)); -extern double __ieee754_atan2 __P((double,double)); -extern double __ieee754_exp __P((double)); -extern double __ieee754_cosh __P((double)); -extern double __ieee754_fmod __P((double,double)); -extern double __ieee754_pow __P((double,double)); -extern double __ieee754_lgamma_r __P((double,int *)); -extern double __ieee754_gamma_r __P((double,int *)); -extern double __ieee754_log10 __P((double)); -extern double __ieee754_sinh __P((double)); -extern double __ieee754_hypot __P((double,double)); -extern double __ieee754_j0 __P((double)); -extern double __ieee754_j1 __P((double)); -extern double __ieee754_y0 __P((double)); -extern double __ieee754_y1 __P((double)); -extern double __ieee754_jn __P((int,double)); -extern double __ieee754_yn __P((int,double)); -extern double __ieee754_remainder __P((double,double)); -extern __int32_t __ieee754_rem_pio2 __P((double,double*)); -#ifdef _SCALB_INT -extern double __ieee754_scalb __P((double,int)); -#else -extern double __ieee754_scalb __P((double,double)); -#endif - -/* fdlibm kernel function */ -extern double __kernel_standard __P((double,double,int)); -extern double __kernel_sin __P((double,double,int)); -extern double __kernel_cos __P((double,double)); -extern double __kernel_tan __P((double,double,int)); -extern int __kernel_rem_pio2 __P((double*,double*,int,int,int,const __int32_t*)); - -/* Undocumented float functions. */ -#ifdef _SCALB_INT -extern float scalbf __P((float, int)); -#else -extern float scalbf __P((float, float)); -#endif -extern float significandf __P((float)); - -/* ieee style elementary float functions */ -extern float __ieee754_sqrtf __P((float)); -extern float __ieee754_acosf __P((float)); -extern float __ieee754_acoshf __P((float)); -extern float __ieee754_logf __P((float)); -extern float __ieee754_atanhf __P((float)); -extern float __ieee754_asinf __P((float)); -extern float __ieee754_atan2f __P((float,float)); -extern float __ieee754_expf __P((float)); -extern float __ieee754_coshf __P((float)); -extern float __ieee754_fmodf __P((float,float)); -extern float __ieee754_powf __P((float,float)); -extern float __ieee754_lgammaf_r __P((float,int *)); -extern float __ieee754_gammaf_r __P((float,int *)); -extern float __ieee754_log10f __P((float)); -extern float __ieee754_sinhf __P((float)); -extern float __ieee754_hypotf __P((float,float)); -extern float __ieee754_j0f __P((float)); -extern float __ieee754_j1f __P((float)); -extern float __ieee754_y0f __P((float)); -extern float __ieee754_y1f __P((float)); -extern float __ieee754_jnf __P((int,float)); -extern float __ieee754_ynf __P((int,float)); -extern float __ieee754_remainderf __P((float,float)); -extern __int32_t __ieee754_rem_pio2f __P((float,float*)); -#ifdef _SCALB_INT -extern float __ieee754_scalbf __P((float,int)); -#else -extern float __ieee754_scalbf __P((float,float)); -#endif - -/* float versions of fdlibm kernel functions */ -extern float __kernel_sinf __P((float,float,int)); -extern float __kernel_cosf __P((float,float)); -extern float __kernel_tanf __P((float,float,int)); -extern int __kernel_rem_pio2f __P((float*,float*,int,int,int,const __int32_t*)); - -/* The original code used statements like - n0 = ((*(int*)&one)>>29)^1; * index of high word * - ix0 = *(n0+(int*)&x); * high word of x * - ix1 = *((1-n0)+(int*)&x); * low word of x * - to dig two 32 bit words out of the 64 bit IEEE floating point - value. That is non-ANSI, and, moreover, the gcc instruction - scheduler gets it wrong. We instead use the following macros. - Unlike the original code, we determine the endianness at compile - time, not at run time; I don't see much benefit to selecting - endianness at run time. */ - -#ifndef __IEEE_BIG_ENDIAN -#ifndef __IEEE_LITTLE_ENDIAN - #error Must define endianness -#endif -#endif - -/* A union which permits us to convert between a double and two 32 bit - ints. */ - -#ifdef __IEEE_BIG_ENDIAN - -typedef union -{ - double value; - struct - { - __uint32_t msw; - __uint32_t lsw; - } parts; -} ieee_double_shape_type; - -#endif - -#ifdef __IEEE_LITTLE_ENDIAN - -typedef union -{ - double value; - struct - { - __uint32_t lsw; - __uint32_t msw; - } parts; -} ieee_double_shape_type; - -#endif - -/* Get two 32 bit ints from a double. */ - -#define EXTRACT_WORDS(ix0,ix1,d) \ -do { \ - ieee_double_shape_type ew_u; \ - ew_u.value = (d); \ - (ix0) = ew_u.parts.msw; \ - (ix1) = ew_u.parts.lsw; \ -} while (0) - -/* Get the more significant 32 bit int from a double. */ - -#define GET_HIGH_WORD(i,d) \ -do { \ - ieee_double_shape_type gh_u; \ - gh_u.value = (d); \ - (i) = gh_u.parts.msw; \ -} while (0) - -/* Get the less significant 32 bit int from a double. */ - -#define GET_LOW_WORD(i,d) \ -do { \ - ieee_double_shape_type gl_u; \ - gl_u.value = (d); \ - (i) = gl_u.parts.lsw; \ -} while (0) - -/* Set a double from two 32 bit ints. */ - -#define INSERT_WORDS(d,ix0,ix1) \ -do { \ - ieee_double_shape_type iw_u; \ - iw_u.parts.msw = (ix0); \ - iw_u.parts.lsw = (ix1); \ - (d) = iw_u.value; \ -} while (0) - -/* Set the more significant 32 bits of a double from an int. */ - -#define SET_HIGH_WORD(d,v) \ -do { \ - ieee_double_shape_type sh_u; \ - sh_u.value = (d); \ - sh_u.parts.msw = (v); \ - (d) = sh_u.value; \ -} while (0) - -/* Set the less significant 32 bits of a double from an int. */ - -#define SET_LOW_WORD(d,v) \ -do { \ - ieee_double_shape_type sl_u; \ - sl_u.value = (d); \ - sl_u.parts.lsw = (v); \ - (d) = sl_u.value; \ -} while (0) - -/* A union which permits us to convert between a float and a 32 bit - int. */ - -typedef union -{ - float value; - __uint32_t word; -} ieee_float_shape_type; - -/* Get a 32 bit int from a float. */ - -#define GET_FLOAT_WORD(i,d) \ -do { \ - ieee_float_shape_type gf_u; \ - gf_u.value = (d); \ - (i) = gf_u.word; \ -} while (0) - -/* Set a float from a 32 bit int. */ - -#define SET_FLOAT_WORD(d,i) \ -do { \ - ieee_float_shape_type sf_u; \ - sf_u.word = (i); \ - (d) = sf_u.value; \ -} while (0) - -/* Macros to avoid undefined behaviour that can arise if the amount - of a shift is exactly equal to the size of the shifted operand. */ - -#define SAFE_LEFT_SHIFT(op,amt) \ - (((amt) < 8 * sizeof(op)) ? ((op) << (amt)) : 0) - -#define SAFE_RIGHT_SHIFT(op,amt) \ - (((amt) < 8 * sizeof(op)) ? ((op) >> (amt)) : 0) - -#ifdef _COMPLEX_H - -/* - * Quoting from ISO/IEC 9899:TC2: - * - * 6.2.5.13 Types - * Each complex type has the same representation and alignment requirements as - * an array type containing exactly two elements of the corresponding real type; - * the first element is equal to the real part, and the second element to the - * imaginary part, of the complex number. - */ -typedef union { - float complex z; - float parts[2]; -} float_complex; - -typedef union { - double complex z; - double parts[2]; -} double_complex; - -typedef union { - long double complex z; - long double parts[2]; -} long_double_complex; - -#define REAL_PART(z) ((z).parts[0]) -#define IMAG_PART(z) ((z).parts[1]) - -#endif /* _COMPLEX_H */ -