Imported Upstream version 3.2.2
[debian/gnuradio] / gr-radio-astronomy / src / python / usrp_ra_receiver.py
index c68808e80eaa015dbef3c5e5a6830adf5dfb1961..60d5594423a9a077c0b9ae15cd3a38cf2f02c3f4 100755 (executable)
@@ -1,6 +1,6 @@
 #!/usr/bin/env python
 #
-# Copyright 2004,2005 Free Software Foundation, Inc.
+# Copyright 2004,2005,2007 Free Software Foundation, Inc.
 # 
 # This file is part of GNU Radio
 # 
@@ -11,7 +11,7 @@
 # 
 # GNU Radio is distributed in the hope that it will be useful,
 # but WITHOUT ANY WARRANTY; without even the implied warranty of
-# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 # GNU General Public License for more details.
 # 
 # You should have received a copy of the GNU General Public License
 
 from gnuradio import gr, gru
 from gnuradio import usrp
-import usrp_dbid
+from usrpm import usrp_dbid
 from gnuradio import eng_notation
 from gnuradio.eng_option import eng_option
-from gnuradio.wxgui import stdgui, ra_fftsink, ra_stripchartsink, waterfallsink, form, slider
+from gnuradio.wxgui import stdgui2, ra_fftsink, ra_stripchartsink, ra_waterfallsink, form, slider
 from optparse import OptionParser
 import wx
 import sys
-from Numeric import *
-import FFT
+import Numeric 
+import time
+import numpy.fft
 import ephem
-from gnuradio.local_calibrator import *
-
-class app_flow_graph(stdgui.gui_flow_graph):
-    def __init__(self, frame, panel, vbox, argv):
-        stdgui.gui_flow_graph.__init__(self)
-
-        self.frame = frame
-        self.panel = panel
-        
-        parser = OptionParser(option_class=eng_option)
-        parser.add_option("-R", "--rx-subdev-spec", type="subdev", default=(0, 0),
-                          help="select USRP Rx side A or B (default=A)")
-        parser.add_option("-d", "--decim", type="int", default=16,
-                          help="set fgpa decimation rate to DECIM [default=%default]")
-        parser.add_option("-f", "--freq", type="eng_float", default=None,
-                          help="set frequency to FREQ", metavar="FREQ")
-       parser.add_option("-a", "--avg", type="eng_float", default=1.0,
-               help="set spectral averaging alpha")
-       parser.add_option("-i", "--integ", type="eng_float", default=1.0,
-               help="set integration time")
-        parser.add_option("-g", "--gain", type="eng_float", default=None,
-                          help="set gain in dB (default is midpoint)")
-        parser.add_option("-l", "--reflevel", type="eng_float", default=30.0,
-                          help="Set Total power reference level")
-        parser.add_option("-y", "--division", type="eng_float", default=0.5,
-                          help="Set Total power Y division size")
-        parser.add_option("-e", "--longitude", type="eng_float", default=-76.02,                          help="Set Observer Longitude")
-        parser.add_option("-c", "--latitude", type="eng_float", default=44.85,                          help="Set Observer Latitude")
-        parser.add_option("-o", "--observing", type="eng_float", default=0.0,
-                        help="Set observing frequency")
-        parser.add_option("-x", "--ylabel", default="dB", help="Y axis label") 
-        parser.add_option("-C", "--cfunc", default="default", help="Calibration function name") 
-        parser.add_option("-z", "--divbase", type="eng_float", default=0.025, help="Y Division increment base") 
-        parser.add_option("-v", "--stripsize", type="eng_float", default=2400, help="Size of stripchart, in 2Hz samples") 
-        parser.add_option("-F", "--fft_size", type="eng_float", default=1024, help="Size of FFT")
-
-        parser.add_option("-N", "--decln", type="eng_float", default=999.99, help="Observing declination")
-        parser.add_option("-I", "--interfilt", action="store_true", default=False)
-        parser.add_option("-X", "--prefix", default="./")
-        (options, args) = parser.parse_args()
-        if len(args) != 0:
-            parser.print_help()
-            sys.exit(1)
-
-        self.show_debug_info = True
-        
-        # build the graph
-
-        self.u = usrp.source_c(decim_rate=options.decim)
-        self.u.set_mux(usrp.determine_rx_mux_value(self.u, options.rx_subdev_spec))
-        self.cardtype = self.u.daughterboard_id(0)
-        # Set initial declination
-        self.decln = options.decln
-
-        # Turn off interference filter by default
-        self.use_interfilt = options.interfilt
-
-        # determine the daughterboard subdevice we're using
-        self.subdev = usrp.selected_subdev(self.u, options.rx_subdev_spec)
-
-        input_rate = self.u.adc_freq() / self.u.decim_rate()
-
-        tpstr="calib_"+options.cfunc+"_total_power"
-        sstr="calib_"+options.cfunc+"_fft"
-        self.tpcfunc=eval(tpstr)
-        self.scfunc=eval(sstr)
-
-        #
-        # Set prefix for data files
-        #
-        self.prefix = options.prefix
-        calib_set_prefix(self.prefix)
-
-        # Set up FFT display
-        self.scope = ra_fftsink.ra_fft_sink_c (self, panel, 
-           fft_size=int(options.fft_size), sample_rate=input_rate,
-           fft_rate=8, title="Spectral",  
-           cfunc=self.scfunc, xydfunc=self.xydfunc, interfunc=self.interference)
-
-        # Set up ephemeris data
-        self.locality = ephem.Observer()
-        self.locality.long = str(options.longitude)
-        self.locality.lat = str(options.latitude)
-
-        # Set up stripchart display
-        self.stripsize = int(options.stripsize)
-        self.chart = ra_stripchartsink.stripchart_sink_f (self, panel,
-            stripsize=self.stripsize,
-            title="Continuum",
-            xlabel="LMST Offset (Seconds)",
-            scaling=1.0, ylabel=options.ylabel,
-            divbase=options.divbase, cfunc=self.tpcfunc)
-
-        # Set center frequency
-        self.centerfreq = options.freq
-
-        # Set observing frequency (might be different from actual programmed
-        #    RF frequency)
-        if options.observing == 0.0:
-            self.observing = options.freq
-        else:
-            self.observing = options.observing
-
-        self.bw = input_rate
-
-        #
-        # Produce a default interference map
-        #  May not actually get used, unless --interfilt was specified
-        #
-        self.intmap = Numeric.zeros(256,Numeric.Complex64)
-        for i in range(0,len(self.intmap)):
-            self.intmap[i] = complex(1.0, 0.0)
-
-        # We setup the first two integrators to produce a fixed integration
-        # Down to 1Hz, with output at 1 samples/sec
-        N = input_rate/5000
-
-        # Second stage runs on decimated output of first
-        M = (input_rate/N)
-
-        # Create taps for first integrator
-        t = range(0,N-1)
-        tapsN = []
-        for i in t:
-             tapsN.append(1.0/N)
-
-        # Create taps for second integrator
-        t = range(0,M-1)
-        tapsM = []
-        for i in t:
-            tapsM.append(1.0/M)
-
-        #
-        # The 3rd integrator is variable, and user selectable at runtime
-        # This integrator doesn't decimate, but is used to set the
-        #  final integration time based on the constant 1Hz input samples
-        # The strip chart is fed at a constant 1Hz rate as a result
-        #
-
-        #
-        # Call constructors for receive chains
-        #
-
-        #
-        # This is the interference-zapping filter
-        #
-        # The GUI is used to set/clear inteference zones in
-        #   the filter.  The non-interfering zones are set to
-        #   1.0.
-        #
-        if 0:
-            self.interfilt = gr.fft_filter_ccc(1,self.intmap)
-            tmp = FFT.inverse_fft(self.intmap)
-            self.interfilt.set_taps(tmp)
-
-        # The three integrators--two FIR filters, and an IIR final filter
-        self.integrator1 = gr.fir_filter_fff (N, tapsN)
-        self.integrator2 = gr.fir_filter_fff (M, tapsM)
-        self.integrator3 = gr.single_pole_iir_filter_ff(1.0)
-
-        # Split complex USRP stream into a pair of floats
-        self.splitter = gr.complex_to_float (1);
-        self.toshort = gr.float_to_short();
-
-        # I squarer (detector)
-        self.multI = gr.multiply_ff();
-
-        # Q squarer (detector)
-        self.multQ = gr.multiply_ff();
-
-        # Adding squared I and Q to produce instantaneous signal power
-        self.adder = gr.add_ff();
-
-        #
-        # Start connecting configured modules in the receive chain
-        #
-
-        # Connect interference-filtered USRP input to selected scope function
-        if self.use_interfilt == True:
-            self.connect(self.u, self.interfilt, self.scope)
 
-            # Connect interference-filtered USRP to a complex->float splitter
-            self.connect(self.interfilt, self.splitter)
-
-        else:
-            self.connect(self.u, self.scope)
-            self.connect(self.u, self.splitter)
-
-        # Connect splitter outputs to multipliers
-        # First do I^2
-        self.connect((self.splitter, 0), (self.multI,0))
-        self.connect((self.splitter, 0), (self.multI,1))
-
-        # Then do Q^2
-        self.connect((self.splitter, 1), (self.multQ,0))
-        self.connect((self.splitter, 1), (self.multQ,1))
-
-        # Then sum the squares
-        self.connect(self.multI, (self.adder,0))
-        self.connect(self.multQ, (self.adder,1))
-
-        # Connect adder output to three-stages of FIR integrator
-        self.connect(self.adder, self.integrator1, 
-           self.integrator2, self.integrator3, self.chart)
-
-
-        self._build_gui(vbox)
-
-        # Make GUI agree with command-line
-        self.myform['integration'].set_value(int(options.integ))
-        self.myform['average'].set_value(int(options.avg))
-
-        # Make integrator agree with command line
-        self.set_integration(int(options.integ))
-
-        # Make spectral averager agree with command line
-        if options.avg != 1.0:
-            self.scope.set_avg_alpha(float(1.0/options.avg))
-            calib_set_avg_alpha(float(options.avg))
-            self.scope.set_average(True)
-
-
-        # Set division size
-        self.chart.set_y_per_div(options.division)
-
-        # Set reference(MAX) level
-        self.chart.set_ref_level(options.reflevel)
-
-        # set initial values
-
-        if options.gain is None:
-            # if no gain was specified, use the mid-point in dB
-            g = self.subdev.gain_range()
-            options.gain = float(g[0]+g[1])/2
-
-        if options.freq is None:
-            # if no freq was specified, use the mid-point
-            r = self.subdev.freq_range()
-            options.freq = float(r[0]+r[1])/2
-
-        # Set the initial gain control
-        self.set_gain(options.gain)
-
-        if not(self.set_freq(options.freq)):
-            self._set_status_msg("Failed to set initial frequency")
-
-        self.set_decln (self.decln)
-        calib_set_decln (self.decln)
-
-        self.myform['decim'].set_value(self.u.decim_rate())
-        self.myform['fs@usb'].set_value(self.u.adc_freq() / self.u.decim_rate())
-        self.myform['dbname'].set_value(self.subdev.name())
-
-        # Make sure calibrator knows what our bandwidth is
-        calib_set_bw(self.u.adc_freq() / self.u.decim_rate())
-
-        # Set analog baseband filtering, if DBS_RX
-        if self.cardtype == usrp_dbid.DBS_RX:
-            lbw = (self.u.adc_freq() / self.u.decim_rate()) / 2
-            if lbw < 1.0e6:
-                lbw = 1.0e6
-            self.subdev.set_bw(lbw)
-
-        # Tell calibrator our declination as well
-        calib_set_decln(self.decln)
-
-        # Start the timer for the LMST display
-        self.lmst_timer.Start(1000)
-
-
-    def _set_status_msg(self, msg):
-        self.frame.GetStatusBar().SetStatusText(msg, 0)
-
-    def _build_gui(self, vbox):
-
-        def _form_set_freq(kv):
-            return self.set_freq(kv['freq'])
-
-        def _form_set_decln(kv):
-            return self.set_decln(kv['decln'])
-
-        # Position the FFT display
-        vbox.Add(self.scope.win, 15, wx.EXPAND)
-
-        # Position the Total-power stripchart
-        vbox.Add(self.chart.win, 15, wx.EXPAND)
-        
-        # add control area at the bottom
-        self.myform = myform = form.form()
-        hbox = wx.BoxSizer(wx.HORIZONTAL)
-        hbox.Add((7,0), 0, wx.EXPAND)
-        vbox1 = wx.BoxSizer(wx.VERTICAL)
-        myform['freq'] = form.float_field(
-            parent=self.panel, sizer=vbox1, label="Center freq", weight=1,
-            callback=myform.check_input_and_call(_form_set_freq, self._set_status_msg))
-
-        vbox1.Add((4,0), 0, 0)
-
-        myform['lmst_high'] = form.static_text_field(
-            parent=self.panel, sizer=vbox1, label="Current LMST", weight=1)
-        vbox1.Add((4,0), 0, 0)
-
-        myform['spec_data'] = form.static_text_field(
-            parent=self.panel, sizer=vbox1, label="Spectral Cursor", weight=1)
-        vbox1.Add((4,0), 0, 0)
-
-        vbox2 = wx.BoxSizer(wx.VERTICAL)
-        g = self.subdev.gain_range()
-        myform['gain'] = form.slider_field(parent=self.panel, sizer=vbox2, label="RF Gain",
-                                           weight=1,
-                                           min=int(g[0]), max=int(g[1]),
-                                           callback=self.set_gain)
-
-        vbox2.Add((4,0), 0, 0)
-        myform['average'] = form.slider_field(parent=self.panel, sizer=vbox2, 
-                    label="Spectral Averaging (FFT frames)", weight=1, min=1, max=2000, callback=self.set_averaging)
-
-        vbox2.Add((4,0), 0, 0)
-
-        myform['integration'] = form.slider_field(parent=self.panel, sizer=vbox2,
-               label="Continuum Integration Time (sec)", weight=1, min=1, max=180, callback=self.set_integration)
-
-        vbox2.Add((4,0), 0, 0)
-        myform['decln'] = form.float_field(
-            parent=self.panel, sizer=vbox2, label="Current Declination", weight=1,
-            callback=myform.check_input_and_call(_form_set_decln))
-        vbox2.Add((4,0), 0, 0)
-
-        buttonbox = wx.BoxSizer(wx.HORIZONTAL)
-        if self.use_interfilt == True:
-            self.doit = form.button_with_callback(self.panel,
-                  label="Clear Interference List", 
-                  callback=self.clear_interferers)
-        if self.use_interfilt == True:
-            buttonbox.Add(self.doit, 0, wx.CENTER)
-        vbox.Add(buttonbox, 0, wx.CENTER)
-        hbox.Add(vbox1, 0, 0)
-       hbox.Add(vbox2, wx.ALIGN_RIGHT, 0)
-        vbox.Add(hbox, 0, wx.EXPAND)
-
-        self._build_subpanel(vbox)
-
-        self.lmst_timer = wx.PyTimer(self.lmst_timeout)
-        self.lmst_timeout()
-
-
-    def _build_subpanel(self, vbox_arg):
-        # build a secondary information panel (sometimes hidden)
-
-        # FIXME figure out how to have this be a subpanel that is always
-        # created, but has its visibility controlled by foo.Show(True/False)
-        
-        if not(self.show_debug_info):
-            return
-
-        panel = self.panel
-        vbox = vbox_arg
-        myform = self.myform
-
-        #panel = wx.Panel(self.panel, -1)
-        #vbox = wx.BoxSizer(wx.VERTICAL)
-
-        hbox = wx.BoxSizer(wx.HORIZONTAL)
-        hbox.Add((5,0), 0)
-        myform['decim'] = form.static_float_field(
-            parent=panel, sizer=hbox, label="Decim")
-
-        hbox.Add((5,0), 1)
-        myform['fs@usb'] = form.static_float_field(
-            parent=panel, sizer=hbox, label="Fs@USB")
-
-        hbox.Add((5,0), 1)
-        myform['dbname'] = form.static_text_field(
-            parent=panel, sizer=hbox)
-
-        hbox.Add((5,0), 1)
-        myform['baseband'] = form.static_float_field(
-            parent=panel, sizer=hbox, label="Analog BB")
-
-        hbox.Add((5,0), 1)
-        myform['ddc'] = form.static_float_field(
-            parent=panel, sizer=hbox, label="DDC")
-
-        hbox.Add((5,0), 0)
-        vbox.Add(hbox, 0, wx.EXPAND)
-
-        
-        
-    def set_freq(self, target_freq):
-        """
-        Set the center frequency we're interested in.
-
-        @param target_freq: frequency in Hz
-        @rypte: bool
-
-        Tuning is a two step process.  First we ask the front-end to
-        tune as close to the desired frequency as it can.  Then we use
-        the result of that operation and our target_frequency to
-        determine the value for the digital down converter.
-        """
-        #
-        # Everything except BASIC_RX should support usrp.tune()
-        #
-        if not (self.cardtype == usrp_dbid.BASIC_RX):
-            r = usrp.tune(self.u, 0, self.subdev, target_freq)
-        else:
-            r = self.u.set_rx_freq(0, target_freq)
-            f = self.u.rx_freq(0)
-            if abs(f-target_freq) > 2.0e3:
-                r = 0
-        if r:
-            self.myform['freq'].set_value(target_freq)     # update displayed value
-            #
-            # Make sure calibrator knows our target freq
-            #
-
-            # Remember centerfreq---used for doppler calcs
-            delta = self.centerfreq - target_freq
-            self.centerfreq = target_freq
-            self.observing -= delta
-            self.scope.set_baseband_freq (self.observing)
-            calib_set_freq(self.observing)
-
-            # Clear interference list
-            self.clear_interferers()
-
-            self.myform['baseband'].set_value(r.baseband_freq)
-            self.myform['ddc'].set_value(r.dxc_freq)
-
-            return True
-
-        return False
-
-    def set_decln(self, dec):
-        self.decln = dec
-        self.myform['decln'].set_value(dec)     # update displayed value
-        calib_set_decln(dec)
-
-    def set_gain(self, gain):
-        self.myform['gain'].set_value(gain)     # update displayed value
-        self.subdev.set_gain(gain)
-
-        #
-        # Make sure calibrator knows our gain setting
-        #
-        calib_set_gain(gain)
-
-    def set_averaging(self, avval):
-        self.myform['average'].set_value(avval)
-        self.scope.set_avg_alpha(1.0/(avval))
-        calib_set_avg_alpha(avval)
-        self.scope.set_average(True)
-
-    def set_integration(self, integval):
-        self.integrator3.set_taps(1.0/integval)
-        self.myform['integration'].set_value(integval)
-
-        #
-        # Make sure calibrator knows our integration time
-        #
-        calib_set_integ(integval)
-
-    def lmst_timeout(self):
-         self.locality.date = ephem.now()
-         sidtime = self.locality.sidereal_time()
-         self.myform['lmst_high'].set_value(str(ephem.hours(sidtime)))
-
-    def xydfunc(self,xyv):
-        magn = int(log10(self.observing))
-        if (magn == 6 or magn == 7 or magn == 8):
-            magn = 6
-        dfreq = xyv[0] * pow(10.0,magn)
-        ratio = self.observing / dfreq
-        vs = 1.0 - ratio
-        vs *= 299792.0
-        if magn >= 9:
-           xhz = "Ghz"
-        elif magn >= 6:
-           xhz = "Mhz"
-        elif magn <= 5:
-           xhz =  "Khz"
-        s = "%.6f%s\n%.3fdB" % (xyv[0], xhz, xyv[1])
-        s2 = "\n%.3fkm/s" % vs
-        self.myform['spec_data'].set_value(s+s2)
-
-    def interference(self,x):
-        if self.use_interfilt == False:
-            return
-        magn = int(log10(self.observing))
-        dfreq = x * pow(10.0,magn)
-        delta = dfreq - self.observing
-        fincr = self.bw / len(self.intmap)
-        l = len(self.intmap)
-        if delta > 0:
-            offset = delta/fincr
-        else:
-            offset = (l) - int((abs(delta)/fincr))
-
-        offset = int(offset)
-
-        if offset >= len(self.intmap) or offset < 0:
-            print "interference offset is invalid--", offset
-            return
-
-        #
-        # Zero out the region around the selected interferer
-        #
-        self.intmap[offset-2] = complex (0.5, 0.0)
-        self.intmap[offset-1] = complex (0.25, 0.0)
-        self.intmap[offset] = complex (0.0, 0.0)
-        self.intmap[offset+1] = complex(0.25, 0.0)
-        self.intmap[offset+2] = complex(0.5, 0.0)
-
-        #
-        # Set new taps
-        #
-        tmp = FFT.inverse_fft(self.intmap)
-        self.interfilt.set_taps(tmp)
-
-    def clear_interf(self):
-         self.clear_interferers()
-
-    def clear_interferers(self):
-         for i in range(0,len(self.intmap)):
-             self.intmap[i] = complex(1.0,0.0)
-         tmp = FFT.inverse_fft(self.intmap)
-         if self.use_interfilt == True:
-             self.interfilt.set_taps(tmp)
-   
-
-
-    def toggle_cal(self):
-        if (self.calstate == True):
-          self.calstate = False
-          self.u.write_io(0,0,(1<<15))
-          self.calibrator.SetLabel("Calibration Source: Off")
-        else:
-          self.calstate = True
-          self.u.write_io(0,(1<<15),(1<<15))
-          self.calibrator.SetLabel("Calibration Source: On")
-
-    def toggle_annotation(self):
-        if (self.annotate_state == True):
-          self.annotate_state = False
-          self.annotation.SetLabel("Annotation: Off")
-        else:
-          self.annotate_state = True
-          self.annotation.SetLabel("Annotation: On")
-        calib_set_interesting(self.annotate_state)
-        
+class app_flow_graph(stdgui2.std_top_block):
+       def __init__(self, frame, panel, vbox, argv):
+               stdgui2.std_top_block.__init__(self, frame, panel, vbox, argv)
+
+               self.frame = frame
+               self.panel = panel
+               
+               parser = OptionParser(option_class=eng_option)
+               parser.add_option("-R", "--rx-subdev-spec", type="subdev", default=(0, 0),
+                       help="select USRP Rx side A or B (default=A)")
+               parser.add_option("-d", "--decim", type="int", default=16,
+                       help="set fgpa decimation rate to DECIM [default=%default]")
+               parser.add_option("-f", "--freq", type="eng_float", default=None,
+                       help="set frequency to FREQ", metavar="FREQ")
+               parser.add_option("-a", "--avg", type="eng_float", default=1.0,
+                       help="set spectral averaging alpha")
+               parser.add_option("-i", "--integ", type="eng_float", default=1.0,
+                       help="set integration time")
+               parser.add_option("-g", "--gain", type="eng_float", default=None,
+                       help="set gain in dB (default is midpoint)")
+               parser.add_option("-l", "--reflevel", type="eng_float", default=30.0,
+                       help="Set Total power reference level")
+               parser.add_option("-y", "--division", type="eng_float", default=0.5,
+                       help="Set Total power Y division size")
+               parser.add_option("-e", "--longitude", type="eng_float", default=-76.02,help="Set Observer Longitude")
+               parser.add_option("-c", "--latitude", type="eng_float", default=44.85,help="Set Observer Latitude")
+               parser.add_option("-o", "--observing", type="eng_float", default=0.0,
+                       help="Set observing frequency")
+               parser.add_option("-x", "--ylabel", default="dB", help="Y axis label") 
+               parser.add_option("-z", "--divbase", type="eng_float", default=0.025, help="Y Division increment base") 
+               parser.add_option("-v", "--stripsize", type="eng_float", default=2400, help="Size of stripchart, in 2Hz samples") 
+               parser.add_option("-F", "--fft_size", type="eng_float", default=1024, help="Size of FFT")
+               parser.add_option("-N", "--decln", type="eng_float", default=999.99, help="Observing declination")
+               parser.add_option("-X", "--prefix", default="./")
+               parser.add_option("-M", "--fft_rate", type="eng_float", default=8.0, help="FFT Rate")
+               parser.add_option("-A", "--calib_coeff", type="eng_float", default=1.0, help="Calibration coefficient")
+               parser.add_option("-B", "--calib_offset", type="eng_float", default=0.0, help="Calibration coefficient")
+               parser.add_option("-W", "--waterfall", action="store_true", default=False, help="Use Waterfall FFT display")
+               parser.add_option("-S", "--setimode", action="store_true", default=False, help="Enable SETI processing of spectral data")
+               parser.add_option("-K", "--setik", type="eng_float", default=1.5, help="K value for SETI analysis")
+               parser.add_option("-T", "--setibandwidth", type="eng_float", default=12500, help="Instantaneous SETI observing bandwidth--must be divisor of 250Khz")
+               parser.add_option("-Q", "--seti_range", type="eng_float", default=1.0e6, help="Total scan width, in Hz for SETI scans")
+               parser.add_option("-Z", "--dual_mode", action="store_true",
+                       default=False, help="Dual-polarization mode")
+               parser.add_option("-I", "--interferometer", action="store_true", default=False, help="Interferometer mode")
+               parser.add_option("-D", "--switch_mode", action="store_true", default=False, help="Dicke Switching mode")
+               parser.add_option("-P", "--reference_divisor", type="eng_float", default=1.0, help="Reference Divisor")
+               parser.add_option("-U", "--ref_fifo", default=None)
+               parser.add_option("-k", "--notch_taps", type="int", default=64, help="Number of notch taps")
+               parser.add_option("-n", "--notches", action="store_true", 
+                   default=False, help="Notch frequencies after all other args")
+               parser.add_option("-Y", "--interface", default=None)
+               parser.add_option("-H", "--mac_addr", default=None)
+
+               # Added this documentation
+               
+               (options, args) = parser.parse_args()
+
+               self.setimode = options.setimode
+               self.dual_mode = options.dual_mode
+               self.interferometer = options.interferometer
+               self.normal_mode = False
+               self.switch_mode = options.switch_mode
+               self.switch_state = 0
+               self.reference_divisor = options.reference_divisor
+               self.ref_fifo = options.ref_fifo
+               self.usrp2 = False
+               self.decim = options.decim
+               self.rx_subdev_spec = options.rx_subdev_spec
+               
+               if (options.interface != None and options.mac_addr != None):
+                       self.mac_addr = options.mac_addr
+                       self.interface = options.interface
+                       self.usrp2 = True
+               
+               self.NOTCH_TAPS = options.notch_taps
+               self.notches = Numeric.zeros(self.NOTCH_TAPS,Numeric.Float64)
+               # Get notch locations
+               j = 0
+               for i in args:
+                       self.notches[j] = float(i)
+                       j = j + 1
+               
+               self.use_notches = options.notches
+               
+               if (self.ref_fifo != None):
+                       self.ref_fifo_file = open (self.ref_fifo, "r")
+               
+               modecount = 0
+               for modes in (self.dual_mode, self.interferometer):
+                       if (modes == True):
+                               modecount = modecount + 1
+                               
+               if (modecount > 1):
+                       print "must select only 1 of --dual_mode, or --interferometer"
+                       sys.exit(1)
+                       
+               self.chartneeded = True
+               
+               if (self.setimode == True):
+                       self.chartneeded = False
+                       
+               if (self.setimode == True and self.interferometer == True):
+                       print "can't pick both --setimode and --interferometer"
+                       sys.exit(1)
+                       
+               if (self.setimode == True and self.switch_mode == True):
+                       print "can't pick both --setimode and --switch_mode"
+                       sys.exit(1)
+               
+               if (self.interferometer == True and self.switch_mode == True):
+                       print "can't pick both --interferometer and --switch_mode"
+                       sys.exit(1)
+               
+               if (modecount == 0):
+                       self.normal_mode = True
+
+               self.show_debug_info = True
+               
+               # Pick up waterfall option
+               self.waterfall = options.waterfall
+
+               # SETI mode stuff
+               self.setimode = options.setimode
+               self.seticounter = 0
+               self.setik = options.setik
+               self.seti_fft_bandwidth = int(options.setibandwidth)
+
+               # Calculate binwidth
+               binwidth = self.seti_fft_bandwidth / options.fft_size
+
+               # Use binwidth, and knowledge of likely chirp rates to set reasonable
+               #  values for SETI analysis code.       We assume that SETI signals will
+               #  chirp at somewhere between 0.10Hz/sec and 0.25Hz/sec.
+               #
+               # upper_limit is the "worst case"--that is, the case for which we have
+               #  to wait the longest to actually see any drift, due to the quantizing
+               #  on FFT bins.
+               upper_limit = binwidth / 0.10
+               self.setitimer = int(upper_limit * 2.00)
+               self.scanning = True
+
+               # Calculate the CHIRP values based on Hz/sec
+               self.CHIRP_LOWER = 0.10 * self.setitimer
+               self.CHIRP_UPPER = 0.25 * self.setitimer
+
+               # Reset hit counters to 0
+               self.hitcounter = 0
+               self.s1hitcounter = 0
+               self.s2hitcounter = 0
+               self.avgdelta = 0
+               # We scan through 2Mhz of bandwidth around the chosen center freq
+               self.seti_freq_range = options.seti_range
+               # Calculate lower edge
+               self.setifreq_lower = options.freq - (self.seti_freq_range/2)
+               self.setifreq_current = options.freq
+               # Calculate upper edge
+               self.setifreq_upper = options.freq + (self.seti_freq_range/2)
+
+               # Maximum "hits" in a line
+               self.nhits = 20
+
+               # Number of lines for analysis
+               self.nhitlines = 4
+
+               # We change center frequencies based on nhitlines and setitimer
+               self.setifreq_timer = self.setitimer * (self.nhitlines * 5)
+
+               # Create actual timer
+               self.seti_then = time.time()
+
+               # The hits recording array
+               self.hits_array = Numeric.zeros((self.nhits,self.nhitlines), Numeric.Float64)
+               self.hit_intensities = Numeric.zeros((self.nhits,self.nhitlines), Numeric.Float64)
+               # Calibration coefficient and offset
+               self.calib_coeff = options.calib_coeff
+               self.calib_offset = options.calib_offset
+               if self.calib_offset < -750:
+                       self.calib_offset = -750
+               if self.calib_offset > 750:
+                       self.calib_offset = 750
+
+               if self.calib_coeff < 1:
+                       self.calib_coeff = 1
+               if self.calib_coeff > 100:
+                       self.calib_coeff = 100
+
+               self.integ = options.integ
+               self.avg_alpha = options.avg
+               self.gain = options.gain
+               self.decln = options.decln
+
+               # Set initial values for datalogging timed-output
+               self.continuum_then = time.time()
+               self.spectral_then = time.time()
+               
+         
+               # build the graph
+
+               self.subdev = [(0, 0), (0,0)]
+               
+               #
+               # If SETI mode, we always run at maximum USRP decimation
+               #
+               if (self.setimode):
+                       options.decim = 256
+               
+               if (self.dual_mode == True and self.decim <= 4):
+                       print "Cannot use decim <= 4 with dual_mode"
+                       sys.exit(1)
+               
+               self.setup_usrp()
+               
+               # Set initial declination
+               self.decln = options.decln
+
+               input_rate = self.u.adc_freq() / self.u.decim_rate()
+               self.bw = input_rate
+               #
+               # Set prefix for data files
+               #
+               self.prefix = options.prefix
+
+               #
+               # The lower this number, the fewer sample frames are dropped
+               #  in computing the FFT.  A sampled approach is taken to
+               #  computing the FFT of the incoming data, which reduces
+               #  sensitivity.  Increasing sensitivity inreases CPU loading.
+               #
+               self.fft_rate = options.fft_rate
+
+               self.fft_size = int(options.fft_size)
+
+               # This buffer is used to remember the most-recent FFT display
+               #       values.  Used later by self.write_spectral_data() to write
+               #       spectral data to datalogging files, and by the SETI analysis
+               #       function.
+               #
+               self.fft_outbuf = Numeric.zeros(self.fft_size, Numeric.Float64)
+
+               #
+               # If SETI mode, only look at seti_fft_bandwidth
+               #       at a time.
+               #
+               if (self.setimode):
+                       self.fft_input_rate = self.seti_fft_bandwidth
+
+                       #
+                       # Build a decimating bandpass filter
+                       #
+                       self.fft_input_taps = gr.firdes.complex_band_pass (1.0,
+                          input_rate,
+                          -(int(self.fft_input_rate/2)), int(self.fft_input_rate/2), 200,
+                          gr.firdes.WIN_HAMMING, 0)
+
+                       #
+                       # Compute required decimation factor
+                       #
+                       decimation = int(input_rate/self.fft_input_rate)
+                       self.fft_bandpass = gr.fir_filter_ccc (decimation, 
+                               self.fft_input_taps)
+               else:
+                       self.fft_input_rate = input_rate
+
+               # Set up FFT display
+               if self.waterfall == False:
+                  self.scope = ra_fftsink.ra_fft_sink_c (panel, 
+                          fft_size=int(self.fft_size), sample_rate=self.fft_input_rate,
+                          fft_rate=int(self.fft_rate), title="Spectral",  
+                          ofunc=self.fft_outfunc, xydfunc=self.xydfunc)
+               else:
+                       self.scope = ra_waterfallsink.waterfall_sink_c (panel,
+                               fft_size=int(self.fft_size), sample_rate=self.fft_input_rate,
+                               fft_rate=int(self.fft_rate), title="Spectral", ofunc=self.fft_outfunc, size=(1100, 600), xydfunc=self.xydfunc, ref_level=0, span=10)
+
+               # Set up ephemeris data
+               self.locality = ephem.Observer()
+               self.locality.long = str(options.longitude)
+               self.locality.lat = str(options.latitude)
+               
+               # We make notes about Sunset/Sunrise in Continuum log files
+               self.sun = ephem.Sun()
+               self.sunstate = "??"
+
+               # Set up stripchart display
+               tit = "Continuum"
+               if (self.dual_mode != False):
+                       tit = "H+V Continuum"
+               if (self.interferometer != False):
+                       tit = "East x West Correlation"
+               self.stripsize = int(options.stripsize)
+               if self.chartneeded == True:
+                       self.chart = ra_stripchartsink.stripchart_sink_f (panel,
+                               stripsize=self.stripsize,
+                               title=tit,
+                               xlabel="LMST Offset (Seconds)",
+                               scaling=1.0, ylabel=options.ylabel,
+                               divbase=options.divbase)
+
+               # Set center frequency
+               self.centerfreq = options.freq
+
+               # Set observing frequency (might be different from actual programmed
+               #        RF frequency)
+               if options.observing == 0.0:
+                       self.observing = options.freq
+               else:
+                       self.observing = options.observing
+
+               # Remember our input bandwidth
+               self.bw = input_rate
+               
+               #
+               # 
+               # The strip chart is fed at a constant 1Hz rate
+               #
+
+               #
+               # Call constructors for receive chains
+               #
+               
+               if (self.dual_mode == True):
+                       self.setup_dual (self.setimode)
+                       
+               if (self.interferometer == True):
+                       self.setup_interferometer(self.setimode)
+                               
+               if (self.normal_mode == True):
+                       self.setup_normal(self.setimode)
+                       
+               if (self.setimode == True):
+                       self.setup_seti()
+
+               self._build_gui(vbox)
+
+               # Make GUI agree with command-line
+               self.integ = options.integ
+               if self.setimode == False:
+                       self.myform['integration'].set_value(int(options.integ))
+                       self.myform['offset'].set_value(self.calib_offset)
+                       self.myform['dcgain'].set_value(self.calib_coeff)
+               self.myform['average'].set_value(int(options.avg))
+
+
+               if self.setimode == False:
+                       # Make integrator agree with command line
+                       self.set_integration(int(options.integ))
+
+               self.avg_alpha = options.avg
+
+               # Make spectral averager agree with command line
+               if options.avg != 1.0:
+                       self.scope.set_avg_alpha(float(1.0/options.avg))
+                       self.scope.set_average(True)
+
+               if self.setimode == False:
+                       # Set division size
+                       self.chart.set_y_per_div(options.division)
+                       # Set reference(MAX) level
+                       self.chart.set_ref_level(options.reflevel)
+
+               # set initial values
+
+               if options.gain is None:
+                       # if no gain was specified, use the mid-point in dB
+                       g = self.subdev[0].gain_range()
+                       options.gain = float(g[0]+g[1])/2
+
+               if options.freq is None:
+                       # if no freq was specified, use the mid-point
+                       r = self.subdev[0].freq_range()
+                       options.freq = float(r[0]+r[1])/2
+
+               # Set the initial gain control
+               self.set_gain(options.gain)
+
+               if not(self.set_freq(options.freq)):
+                       self._set_status_msg("Failed to set initial frequency")
+
+               # Set declination
+               self.set_decln (self.decln)
+
+
+               # RF hardware information
+               self.myform['decim'].set_value(self.u.decim_rate())
+               self.myform['USB BW'].set_value(self.u.adc_freq() / self.u.decim_rate())
+               if (self.dual_mode == True):
+                       self.myform['dbname'].set_value(self.subdev[0].name()+'/'+self.subdev[1].name())
+               else:
+                       self.myform['dbname'].set_value(self.subdev[0].name())
+
+               # Set analog baseband filtering, if DBS_RX
+               if self.cardtype == usrp_dbid.DBS_RX:
+                       lbw = (self.u.adc_freq() / self.u.decim_rate()) / 2
+                       if lbw < 1.0e6:
+                               lbw = 1.0e6
+                       self.subdev[0].set_bw(lbw)
+                       self.subdev[1].set_bw(lbw)
+                       
+               # Start the timer for the LMST display and datalogging
+               self.lmst_timer.Start(1000)
+               if (self.switch_mode == True):
+                       self.other_timer.Start(330)
+
+
+       def _set_status_msg(self, msg):
+               self.frame.GetStatusBar().SetStatusText(msg, 0)
+
+       def _build_gui(self, vbox):
+
+               def _form_set_freq(kv):
+                       # Adjust current SETI frequency, and limits
+                       self.setifreq_lower = kv['freq'] - (self.seti_freq_range/2)
+                       self.setifreq_current = kv['freq']
+                       self.setifreq_upper = kv['freq'] + (self.seti_freq_range/2)
+
+                       # Reset SETI analysis timer
+                       self.seti_then = time.time()
+                       # Zero-out hits array when changing frequency
+                       self.hits_array[:,:] = 0.0
+                       self.hit_intensities[:,:] = -60.0
+
+                       return self.set_freq(kv['freq'])
+
+               def _form_set_decln(kv):
+                       return self.set_decln(kv['decln'])
+
+               # Position the FFT display
+               vbox.Add(self.scope.win, 15, wx.EXPAND)
+
+               if self.setimode == False:
+                       # Position the Total-power stripchart
+                       vbox.Add(self.chart.win, 15, wx.EXPAND)
+               
+               # add control area at the bottom
+               self.myform = myform = form.form()
+               hbox = wx.BoxSizer(wx.HORIZONTAL)
+               hbox.Add((7,0), 0, wx.EXPAND)
+               vbox1 = wx.BoxSizer(wx.VERTICAL)
+               myform['freq'] = form.float_field(
+                       parent=self.panel, sizer=vbox1, label="Center freq", weight=1,
+                       callback=myform.check_input_and_call(_form_set_freq, self._set_status_msg))
+
+               vbox1.Add((4,0), 0, 0)
+
+               myform['lmst_high'] = form.static_text_field(
+                       parent=self.panel, sizer=vbox1, label="Current LMST", weight=1)
+               vbox1.Add((4,0), 0, 0)
+
+               if self.setimode == False:
+                       myform['spec_data'] = form.static_text_field(
+                               parent=self.panel, sizer=vbox1, label="Spectral Cursor", weight=1)
+                       vbox1.Add((4,0), 0, 0)
+
+               vbox2 = wx.BoxSizer(wx.VERTICAL)
+               if self.setimode == False:
+                       vbox3 = wx.BoxSizer(wx.VERTICAL)
+               g = self.subdev[0].gain_range()
+               myform['gain'] = form.slider_field(parent=self.panel, sizer=vbox2, label="RF Gain",
+                                                                                  weight=1,
+                                                                                  min=int(g[0]), max=int(g[1]),
+                                                                                  callback=self.set_gain)
+
+               vbox2.Add((4,0), 0, 0)
+               if self.setimode == True:
+                       max_savg = 100
+               else:
+                       max_savg = 3000
+               myform['average'] = form.slider_field(parent=self.panel, sizer=vbox2, 
+                                       label="Spectral Averaging (FFT frames)", weight=1, min=1, max=max_savg, callback=self.set_averaging)
+
+               # Set up scan control button when in SETI mode
+               if (self.setimode == True):
+                       # SETI scanning control
+                       buttonbox = wx.BoxSizer(wx.HORIZONTAL)
+                       self.scan_control = form.button_with_callback(self.panel,
+                                 label="Scan: On ",
+                                 callback=self.toggle_scanning)
+       
+                       buttonbox.Add(self.scan_control, 0, wx.CENTER)
+                       vbox2.Add(buttonbox, 0, wx.CENTER)
+
+               vbox2.Add((4,0), 0, 0)
+
+               if self.setimode == False:
+                       myform['integration'] = form.slider_field(parent=self.panel, sizer=vbox2,
+                                  label="Continuum Integration Time (sec)", weight=1, min=1, max=180, callback=self.set_integration)
+
+                       vbox2.Add((4,0), 0, 0)
+
+               myform['decln'] = form.float_field(
+                       parent=self.panel, sizer=vbox2, label="Current Declination", weight=1,
+                       callback=myform.check_input_and_call(_form_set_decln))
+               vbox2.Add((4,0), 0, 0)
+
+               if self.setimode == False:
+                       myform['offset'] = form.slider_field(parent=self.panel, sizer=vbox3,
+                               label="Post-Detector Offset", weight=1, min=-750, max=750, 
+                               callback=self.set_pd_offset)
+                       vbox3.Add((2,0), 0, 0)
+                       myform['dcgain'] = form.slider_field(parent=self.panel, sizer=vbox3,
+                               label="Post-Detector Gain", weight=1, min=1, max=100, 
+                               callback=self.set_pd_gain)
+                       vbox3.Add((2,0), 0, 0)
+               hbox.Add(vbox1, 0, 0)
+               hbox.Add(vbox2, wx.ALIGN_RIGHT, 0)
+
+               if self.setimode == False:
+                       hbox.Add(vbox3, wx.ALIGN_RIGHT, 0)
+
+               vbox.Add(hbox, 0, wx.EXPAND)
+
+               self._build_subpanel(vbox)
+
+               self.lmst_timer = wx.PyTimer(self.lmst_timeout)
+               self.other_timer = wx.PyTimer(self.other_timeout)
+
+
+       def _build_subpanel(self, vbox_arg):
+               # build a secondary information panel (sometimes hidden)
+
+               # FIXME figure out how to have this be a subpanel that is always
+               # created, but has its visibility controlled by foo.Show(True/False)
+               
+               if not(self.show_debug_info):
+                       return
+
+               panel = self.panel
+               vbox = vbox_arg
+               myform = self.myform
+
+               #panel = wx.Panel(self.panel, -1)
+               #vbox = wx.BoxSizer(wx.VERTICAL)
+
+               hbox = wx.BoxSizer(wx.HORIZONTAL)
+               hbox.Add((5,0), 0)
+               myform['decim'] = form.static_float_field(
+                       parent=panel, sizer=hbox, label="Decim")
+
+               hbox.Add((5,0), 1)
+               myform['USB BW'] = form.static_float_field(
+                       parent=panel, sizer=hbox, label="USB BW")
+
+               hbox.Add((5,0), 1)
+               myform['dbname'] = form.static_text_field(
+                       parent=panel, sizer=hbox)
+
+               hbox.Add((5,0), 1)
+               myform['baseband'] = form.static_float_field(
+                       parent=panel, sizer=hbox, label="Analog BB")
+
+               hbox.Add((5,0), 1)
+               myform['ddc'] = form.static_float_field(
+                       parent=panel, sizer=hbox, label="DDC")
+
+               hbox.Add((5,0), 0)
+               vbox.Add(hbox, 0, wx.EXPAND)
+
+               
+               
+       def set_freq(self, target_freq):
+               """
+               Set the center frequency we're interested in.
+
+               @param target_freq: frequency in Hz
+
+               """
+               #
+               #
+               r = usrp.tune(self.u, self.subdev[0].which(), self.subdev[0], target_freq)
+               r = usrp.tune(self.u, self.subdev[1].which(), self.subdev[1], target_freq)
+               if r:
+                       self.myform['freq'].set_value(target_freq)         # update displayed value
+                       #
+                       # Make sure calibrator knows our target freq
+                       #
+
+                       # Remember centerfreq---used for doppler calcs
+                       delta = self.centerfreq - target_freq
+                       self.centerfreq = target_freq
+                       self.observing -= delta
+                       self.scope.set_baseband_freq (self.observing)
+                       self.myform['baseband'].set_value(r.baseband_freq)
+                       self.myform['ddc'].set_value(r.dxc_freq)
+                       
+                       if (self.use_notches):
+                               self.compute_notch_taps(self.notches)
+                               if self.dual_mode == False and self.interferometer == False:
+                                       self.notch_filt.set_taps(self.notch_taps)
+                               else:
+                                       self.notch_filt1.set_taps(self.notch_taps)
+                                       self.notch_filt2.set_taps(self.notch_taps)
+
+                       return True
+
+               return False
+
+       def set_decln(self, dec):
+               self.decln = dec
+               self.myform['decln'].set_value(dec)             # update displayed value
+
+       def set_gain(self, gain):
+               self.myform['gain'].set_value(gain)             # update displayed value
+               self.subdev[0].set_gain(gain)
+               self.subdev[1].set_gain(gain)
+               self.gain = gain
+
+       def set_averaging(self, avval):
+               self.myform['average'].set_value(avval)
+               self.scope.set_avg_alpha(1.0/(avval))
+               self.scope.set_average(True)
+               self.avg_alpha = avval
+
+       def set_integration(self, integval):
+               if self.setimode == False:
+                       self.integrator.set_taps(1.0/((integval)*(self.bw/2)))
+               self.myform['integration'].set_value(integval)
+               self.integ = integval
+
+       #
+       # Timeout function
+       # Used to update LMST display, as well as current
+       #  continuum value
+       #
+       # We also write external data-logging files here
+       #
+       def lmst_timeout(self):
+               self.locality.date = ephem.now()
+               if self.setimode == False:
+                x = self.probe.level()
+               sidtime = self.locality.sidereal_time()
+               # LMST
+               s = str(ephem.hours(sidtime)) + " " + self.sunstate
+               # Continuum detector value
+               if self.setimode == False:
+                sx = "%7.4f" % x
+                s = s + "\nDet: " + str(sx)
+               else:
+                sx = "%2d" % self.hitcounter
+                s1 = "%2d" % self.s1hitcounter
+                s2 = "%2d" % self.s2hitcounter
+                sa = "%4.2f" % self.avgdelta
+                sy = "%3.1f-%3.1f" % (self.CHIRP_LOWER, self.CHIRP_UPPER)
+                s = s + "\nHits: " + str(sx) + "\nS1:" + str(s1) + " S2:" + str(s2)
+                s = s + "\nAv D: " + str(sa) + "\nCh lim: " + str(sy)
+
+               self.myform['lmst_high'].set_value(s)
+
+               #
+               # Write data out to recording files
+               #
+               if self.setimode == False:
+                self.write_continuum_data(x,sidtime)
+                self.write_spectral_data(self.fft_outbuf,sidtime)
+
+               else:
+                self.seti_analysis(self.fft_outbuf,sidtime)
+                now = time.time()
+                if ((self.scanning == True) and ((now - self.seti_then) > self.setifreq_timer)):
+                        self.seti_then = now
+                        self.setifreq_current = self.setifreq_current + self.fft_input_rate
+                        if (self.setifreq_current > self.setifreq_upper):
+                                self.setifreq_current = self.setifreq_lower
+                        self.set_freq(self.setifreq_current)
+                        # Make sure we zero-out the hits array when changing
+                        #       frequency.
+                        self.hits_array[:,:] = 0.0
+                        self.hit_intensities[:,:] = 0.0
+       
+       def other_timeout(self):
+               if (self.switch_state == 0):
+                       self.switch_state = 1
+                       
+               elif (self.switch_state == 1):
+                       self.switch_state = 0
+                       
+               if (self.switch_state == 0):
+                       self.mute.set_n(1)
+                       self.cmute.set_n(int(1.0e9))
+                       
+               elif (self.switch_state == 1):
+                       self.mute.set_n(int(1.0e9))
+                       self.cmute.set_n(1)
+                       
+               if (self.ref_fifo != "@@@@"):
+                       self.ref_fifo_file.write(str(self.switch_state)+"\n")
+                       self.ref_fifo_file.flush()
+
+               self.avg_reference_value = self.cprobe.level()
+                       
+               #
+               # Set reference value
+               #
+               self.reference_level.set_k(-1.0 * (self.avg_reference_value/self.reference_divisor))
+
+       def fft_outfunc(self,data,l):
+               self.fft_outbuf=data
+
+       def write_continuum_data(self,data,sidtime):
+       
+               # Create localtime structure for producing filename
+               foo = time.localtime()
+               pfx = self.prefix
+               filenamestr = "%s/%04d%02d%02d%02d" % (pfx, foo.tm_year, 
+                  foo.tm_mon, foo.tm_mday, foo.tm_hour)
+       
+               # Open the data file, appending
+               continuum_file = open (filenamestr+".tpdat","a")
+         
+               flt = "%6.3f" % data
+               inter = self.decln
+               integ = self.integ
+               fc = self.observing
+               fc = fc / 1000000
+               bw = self.bw
+               bw = bw / 1000000
+               ga = self.gain
+       
+               now = time.time()
+       
+               #
+               # If time to write full header info (saves storage this way)
+               #
+               if (now - self.continuum_then > 20):
+                       self.sun.compute(self.locality)
+                       enow = ephem.now()
+                       sunset = self.locality.next_setting(self.sun)
+                       sunrise = self.locality.next_rising(self.sun)
+                       sun_insky = "Down"
+                       self.sunstate = "Dn"
+                       if ((sunrise < enow) and (enow < sunset)):
+                          sun_insky = "Up"
+                          self.sunstate = "Up"
+                       self.continuum_then = now
+               
+                       continuum_file.write(str(ephem.hours(sidtime))+" "+flt+" Dn="+str(inter)+",")
+                       continuum_file.write("Ti="+str(integ)+",Fc="+str(fc)+",Bw="+str(bw))
+                       continuum_file.write(",Ga="+str(ga)+",Sun="+str(sun_insky)+"\n")
+               else:
+                       continuum_file.write(str(ephem.hours(sidtime))+" "+flt+"\n")
+       
+               continuum_file.close()
+               return(data)
+
+       def write_spectral_data(self,data,sidtime):
+       
+               now = time.time()
+               delta = 10
+                       
+               # If time to write out spectral data
+               # We don't write this out every time, in order to
+               #       save disk space.  Since the spectral data are
+               #       typically heavily averaged, writing this data
+               #       "once in a while" is OK.
+               #
+               if (now - self.spectral_then >= delta):
+                       self.spectral_then = now
+
+                       # Get localtime structure to make filename from
+                       foo = time.localtime()
+               
+                       pfx = self.prefix
+                       filenamestr = "%s/%04d%02d%02d%02d" % (pfx, foo.tm_year, 
+                          foo.tm_mon, foo.tm_mday, foo.tm_hour)
+       
+                       # Open the file
+                       spectral_file = open (filenamestr+".sdat","a")
+         
+                       # Setup data fields to be written
+                       r = data
+                       inter = self.decln
+                       fc = self.observing
+                       fc = fc / 1000000
+                       bw = self.bw
+                       bw = bw / 1000000
+                       av = self.avg_alpha
+
+                       # Write those fields
+                       spectral_file.write("data:"+str(ephem.hours(sidtime))+" Dn="+str(inter)+",Fc="+str(fc)+",Bw="+str(bw)+",Av="+str(av))
+                       spectral_file.write (" [ ")
+                       for r in data:
+                               spectral_file.write(" "+str(r))
+
+                       spectral_file.write(" ]\n")
+                       spectral_file.close()
+                       return(data)
+       
+               return(data)
+
+       def seti_analysis(self,fftbuf,sidtime):
+               l = len(fftbuf)
+               x = 0
+               hits = []
+               hit_intensities = []
+               if self.seticounter < self.setitimer:
+                       self.seticounter = self.seticounter + 1
+                       return
+               else:
+                       self.seticounter = 0
+
+               # Run through FFT output buffer, computing standard deviation (Sigma)
+               avg = 0
+               # First compute average
+               for i in range(0,l):
+                       avg = avg + fftbuf[i]
+               avg = avg / l
+
+               sigma = 0.0
+               # Then compute standard deviation (Sigma)
+               for i in range(0,l):
+                       d = fftbuf[i] - avg
+                       sigma = sigma + (d*d)
+
+               sigma = Numeric.sqrt(sigma/l)
+
+               #
+               # Snarfle through the FFT output buffer again, looking for
+               #        outlying data points
+
+               start_f = self.observing - (self.fft_input_rate/2)
+               current_f = start_f
+               l = len(fftbuf)
+               f_incr = self.fft_input_rate / l
+               hit = -1
+
+               # -nyquist to DC
+               for i in range(l/2,l):
+                       #
+                       # If current FFT buffer has an item that exceeds the specified
+                       #  sigma
+                       #
+                       if ((fftbuf[i] - avg) > (self.setik * sigma)):
+                               hits.append(current_f)
+                               hit_intensities.append(fftbuf[i])
+                       current_f = current_f + f_incr
+
+               # DC to nyquist
+               for i in range(0,l/2):
+                       #
+                       # If current FFT buffer has an item that exceeds the specified
+                       #  sigma
+                       #
+                       if ((fftbuf[i] - avg) > (self.setik * sigma)):
+                               hits.append(current_f)
+                               hit_intensities.append(fftbuf[i])
+                       current_f = current_f + f_incr
+
+               # No hits
+               if (len(hits) <= 0):
+                       return
+
+
+               #
+               # OK, so we have some hits in the FFT buffer
+               #       They'll have a rather substantial gauntlet to run before
+               #       being declared a real "hit"
+               #
+
+               # Update stats
+               self.s1hitcounter = self.s1hitcounter + len(hits)
+
+               # Weed out buffers with an excessive number of
+               #       signals above Sigma
+               if (len(hits) > self.nhits):
+                       return
+
+
+               # Weed out FFT buffers with apparent multiple narrowband signals
+               #       separated significantly in frequency.  This means that a
+               #       single signal spanning multiple bins is OK, but a buffer that
+               #       has multiple, apparently-separate, signals isn't OK.
+               #
+               last = hits[0]
+               ns2 = 1
+               for i in range(1,len(hits)):
+                       if ((hits[i] - last) > (f_incr*3.0)):
+                               return
+                       last = hits[i]
+                       ns2 = ns2 + 1
+
+               self.s2hitcounter = self.s2hitcounter + ns2
+
+               #
+               # Run through all available hit buffers, computing difference between
+               #       frequencies found there, if they're all within the chirp limits
+               #       declare a good hit
+               #
+               good_hit = False
+               f_ds = Numeric.zeros(self.nhitlines, Numeric.Float64)
+               avg_delta = 0
+               k = 0
+               for i in range(0,min(len(hits),len(self.hits_array[:,0]))):
+                       f_ds[0] = abs(self.hits_array[i,0] - hits[i])
+                       for j in range(1,len(f_ds)):
+                          f_ds[j] = abs(self.hits_array[i,j] - self.hits_array[i,0])
+                          avg_delta = avg_delta + f_ds[j]
+                          k = k + 1
+
+                       if (self.seti_isahit (f_ds)):
+                               good_hit = True
+                               self.hitcounter = self.hitcounter + 1
+                               break
+
+               if (avg_delta/k < (self.seti_fft_bandwidth/2)):
+                       self.avgdelta = avg_delta / k
+
+               # Save 'n shuffle hits
+               #  Old hit buffers percolate through the hit buffers
+               #  (there are self.nhitlines of these buffers)
+               #  and then drop off the end
+               #  A consequence is that while the nhitlines buffers are filling,
+               #  you can get some absurd values for self.avgdelta, because some
+               #  of the buffers are full of zeros
+               for i in range(self.nhitlines,1):
+                       self.hits_array[:,i] = self.hits_array[:,i-1]
+                       self.hit_intensities[:,i] = self.hit_intensities[:,i-1]
+
+               for i in range(0,len(hits)):
+                       self.hits_array[i,0] = hits[i]
+                       self.hit_intensities[i,0] = hit_intensities[i]
+
+               # Finally, write the hits/intensities buffer
+               if (good_hit):
+                       self.write_hits(sidtime)
+
+               return
+
+       def seti_isahit(self,fdiffs):
+               truecount = 0
+
+               for i in range(0,len(fdiffs)):
+                       if (fdiffs[i] >= self.CHIRP_LOWER and fdiffs[i] <= self.CHIRP_UPPER):
+                               truecount = truecount + 1
+
+               if truecount == len(fdiffs):
+                       return (True)
+               else:
+                       return (False)
+
+       def write_hits(self,sidtime):
+               # Create localtime structure for producing filename
+               foo = time.localtime()
+               pfx = self.prefix
+               filenamestr = "%s/%04d%02d%02d%02d" % (pfx, foo.tm_year, 
+                  foo.tm_mon, foo.tm_mday, foo.tm_hour)
+       
+               # Open the data file, appending
+               hits_file = open (filenamestr+".seti","a")
+
+               # Write sidtime first
+               hits_file.write(str(ephem.hours(sidtime))+" "+str(self.decln)+" ")
+
+               #
+               # Then write the hits/hit intensities buffers with enough
+               #       "syntax" to allow parsing by external (not yet written!)
+               #       "stuff".
+               #
+               for i in range(0,self.nhitlines):
+                       hits_file.write(" ")
+                       for j in range(0,self.nhits):
+                               hits_file.write(str(self.hits_array[j,i])+":")
+                               hits_file.write(str(self.hit_intensities[j,i])+",")
+               hits_file.write("\n")
+               hits_file.close()
+               return
+
+       def xydfunc(self,func,xyv):
+               if self.setimode == True:
+                       return
+               magn = int(Numeric.log10(self.observing))
+               if (magn == 6 or magn == 7 or magn == 8):
+                       magn = 6
+               dfreq = xyv[0] * pow(10.0,magn)
+               if func == 0:
+                       ratio = self.observing / dfreq
+                       vs = 1.0 - ratio
+                       vs *= 299792.0
+                       if magn >= 9:
+                          xhz = "Ghz"
+                       elif magn >= 6:
+                          xhz = "Mhz"
+                       elif magn <= 5:
+                          xhz =  "Khz"
+                       s = "%.6f%s\n%.3fdB" % (xyv[0], xhz, xyv[1])
+                       s2 = "\n%.3fkm/s" % vs
+                       self.myform['spec_data'].set_value(s+s2)
+               else:
+                       tmpnotches = Numeric.zeros(self.NOTCH_TAPS,Numeric.Float64)
+                       delfreq = -1
+                       if self.use_notches == True:
+                               for i in range(0,len(self.notches)):
+                                       if self.notches[i] != 0 and abs(self.notches[i] - dfreq) < ((self.bw/self.NOTCH_TAPS)/2.0):
+                                               delfreq = i
+                                               break
+                               j = 0
+                               for i in range(0,len(self.notches)):
+                                       if (i != delfreq):
+                                               tmpnotches[j] = self.notches[i]
+                                               j = j + 1
+                               if (delfreq == -1):
+                                       for i in range(0,len(tmpnotches)):
+                                               if (int(tmpnotches[i]) == 0):
+                                                       tmpnotches[i] = dfreq
+                                                       break
+                               self.notches = tmpnotches
+                               self.compute_notch_taps(self.notches)
+                               if self.dual_mode == False and self.interferometer == False:
+                                       self.notch_filt.set_taps(self.notch_taps)
+                               else:
+                                       self.notch_filt1.set_taps(self.notch_taps)
+                                       self.notch_filt2.set_taps(self.notch_taps)
+
+       def xydfunc_waterfall(self,pos):
+               lower = self.observing - (self.seti_fft_bandwidth / 2)
+               upper = self.observing + (self.seti_fft_bandwidth / 2)
+               binwidth = self.seti_fft_bandwidth / 1024
+               s = "%.6fMHz" % ((lower + (pos.x*binwidth)) / 1.0e6)
+               self.myform['spec_data'].set_value(s)
+
+       def toggle_cal(self):
+               if (self.calstate == True):
+                 self.calstate = False
+                 self.u.write_io(0,0,(1<<15))
+                 self.calibrator.SetLabel("Calibration Source: Off")
+               else:
+                 self.calstate = True
+                 self.u.write_io(0,(1<<15),(1<<15))
+                 self.calibrator.SetLabel("Calibration Source: On")
+
+       def toggle_annotation(self):
+               if (self.annotate_state == True):
+                 self.annotate_state = False
+                 self.annotation.SetLabel("Annotation: Off")
+               else:
+                 self.annotate_state = True
+                 self.annotation.SetLabel("Annotation: On")
+       #
+       # Turn scanning on/off
+       # Called-back by "Recording" button
+       #
+       def toggle_scanning(self):
+               # Current scanning?      Flip state
+               if (self.scanning == True):
+                 self.scanning = False
+                 self.scan_control.SetLabel("Scan: Off")
+               # Not scanning
+               else:
+                 self.scanning = True
+                 self.scan_control.SetLabel("Scan: On ")
+
+       def set_pd_offset(self,offs):
+                self.myform['offset'].set_value(offs)
+                self.calib_offset=offs
+                x = self.calib_coeff / 100.0
+                self.cal_offs.set_k(offs*(x*8000))
+
+       def set_pd_gain(self,gain):
+                self.myform['dcgain'].set_value(gain)
+                self.cal_mult.set_k(gain*0.01)
+                self.calib_coeff = gain
+                x = gain/100.0
+                self.cal_offs.set_k(self.calib_offset*(x*8000))
+
+       def compute_notch_taps(self,notchlist):
+                tmptaps = Numeric.zeros(self.NOTCH_TAPS,Numeric.Complex64)
+                binwidth = self.bw / self.NOTCH_TAPS
+                for i in range(0,self.NOTCH_TAPS):
+                        tmptaps[i] = complex(1.0,0.0)
+                for i in notchlist:
+                        diff = i - self.observing
+                        if int(i) == 0:
+                                break
+                        if ((i < (self.observing - self.bw/2)) or (i > (self.observing + self.bw/2))):
+                                continue
+                        if (diff > 0):
+                                idx = diff / binwidth
+                                idx = round(idx)
+                                idx = int(idx)
+                                if (idx < 0 or idx > (self.NOTCH_TAPS/2)):
+                                        break
+                                tmptaps[idx] = complex(0.0, 0.0)
+
+                        if (diff < 0):
+                                idx = -diff / binwidth
+                                idx = round(idx)
+                                idx = (self.NOTCH_TAPS/2) - idx
+                                idx = int(idx+(self.NOTCH_TAPS/2))
+                                if (idx < 0 or idx >= (self.NOTCH_TAPS)):
+                                        break
+                                tmptaps[idx] = complex(0.0, 0.0)
+
+                self.notch_taps = numpy.fft.ifft(tmptaps)
+       
+       #
+       # Setup common pieces of radiometer mode
+       #
+       def setup_radiometer_common(self,n):
+               # The IIR integration filter for post-detection
+               self.integrator = gr.single_pole_iir_filter_ff(1.0)
+               self.integrator.set_taps (1.0/self.bw)
+               
+               if (self.use_notches == True):
+                       self.compute_notch_taps(self.notches)
+                       if (n == 2):
+                               self.notch_filt1 = gr.fft_filter_ccc(1, self.notch_taps)
+                               self.notch_filt2 = gr.fft_filter_ccc(1, self.notch_taps)
+                       else:
+                               self.notch_filt = gr.fft_filter_ccc(1, self.notch_taps)
+
+
+               # Signal probe
+               self.probe = gr.probe_signal_f()
+
+               #
+               # Continuum calibration stuff
+               #
+               x = self.calib_coeff/100.0
+               self.cal_mult = gr.multiply_const_ff(self.calib_coeff/100.0)
+               self.cal_offs = gr.add_const_ff(self.calib_offset*(x*8000))
+               
+               #
+               # Mega decimator after IIR filter
+               #
+               if (self.switch_mode == False):
+                       self.keepn = gr.keep_one_in_n(gr.sizeof_float, self.bw)
+               else:
+                       self.keepn = gr.keep_one_in_n(gr.sizeof_float, int(self.bw/2))
+               
+               #
+               # For the Dicke-switching scheme
+               #
+               #self.switch = gr.multiply_const_ff(1.0)
+               
+               #
+               if (self.switch_mode == True):
+                       self.vector = gr.vector_sink_f()
+                       self.swkeep = gr.keep_one_in_n(gr.sizeof_float, int(self.bw/3))
+                       self.mute = gr.keep_one_in_n(gr.sizeof_float, 1)
+                       self.cmute = gr.keep_one_in_n(gr.sizeof_float, int(1.0e9))
+                       self.cintegrator = gr.single_pole_iir_filter_ff(1.0/(self.bw/2))        
+                       self.cprobe = gr.probe_signal_f()
+               else:
+                       self.mute = gr.multiply_const_ff(1.0)
+                       
+                       
+               self.avg_reference_value = 0.0
+               self.reference_level = gr.add_const_ff(0.0)
+               
+       #
+       # Setup ordinary single-channel radiometer mode
+       #        
+       def setup_normal(self, setimode):
+               
+               self.setup_radiometer_common(1)
+               
+               self.head = self.u
+               if (self.use_notches == True):
+                       self.shead = self.notch_filt
+               else:
+                       self.shead = self.u
+               
+               if setimode == False:
+                               
+                       self.detector = gr.complex_to_mag_squared()
+                       self.connect(self.shead, self.scope)
+
+                       if (self.use_notches == False):
+                               self.connect(self.head, self.detector, self.mute, self.reference_level,
+                                       self.integrator, self.keepn, self.cal_mult, self.cal_offs, self.chart)
+                       else:
+                               self.connect(self.head, self.notch_filt, self.detector, self.mute, self.reference_level,
+                                       self.integrator, self.keepn, self.cal_mult, self.cal_offs, self.chart)
+                               
+                       self.connect(self.cal_offs, self.probe)
+                       
+                       #
+                       # Add a side-chain detector chain, with a different integrator, for sampling
+                       #   The reference channel data
+                       # This is used to derive the offset value for self.reference_level, used above
+                       #
+                       if (self.switch_mode == True):          
+                               self.connect(self.detector, self.cmute, self.cintegrator, self.swkeep, self.cprobe)
+                       
+               return
+       
+       #
+       # Setup dual-channel (two antenna, usual orthogonal polarity probes in the same waveguide)
+       #
+       def setup_dual(self, setimode):
+               
+               self.setup_radiometer_common(2)
+               
+               self.di = gr.deinterleave(gr.sizeof_gr_complex)
+               self.addchans = gr.add_cc ()
+               self.detector = gr.add_ff ()
+               self.h_power = gr.complex_to_mag_squared()
+               self.v_power = gr.complex_to_mag_squared()
+               self.connect (self.u, self.di)
+               
+               if (self.use_notches == True):
+                       self.connect((self.di, 0), self.notch_filt1, (self.addchans, 0))
+                       self.connect((self.di, 1), self.notch_filt2, (self.addchans, 1))
+               else:
+                       #
+                       # For spectral, adding the two channels works, assuming no gross
+                       #       phase or amplitude error
+                       self.connect ((self.di, 0), (self.addchans, 0))
+                       self.connect ((self.di, 1), (self.addchans, 1))
+               
+               #
+               # Connect heads of spectral and total-power chains
+               #
+               if (self.use_notches == False):
+                       self.head = self.di
+               else:
+                       self.head = (self.notch_filt1, self.notch_filt2)
+                       
+               self.shead = self.addchans
+               
+               if (setimode == False):
+                       #
+                       # For dual-polarization mode, we compute the sum of the
+                       #       powers on each channel, after they've been detected
+                       #
+                       self.detector = gr.add_ff()
+                       
+                       #
+                       # In dual-polarization mode, we compute things a little differently
+                       # In effect, we have two radiometer chains, terminating in an adder
+                       #
+                       if self.use_notches == True:
+                               self.connect(self.notch_filt1, self.h_power)
+                               self.connect(self.notch_filt2, self.v_power)
+                       else:
+                               self.connect((self.head, 0), self.h_power)
+                               self.connect((self.head, 1), self.v_power)
+                       self.connect(self.h_power, (self.detector, 0))
+                       self.connect(self.v_power, (self.detector, 1))
+                       self.connect(self.detector, self.mute, self.reference_level,
+                               self.integrator, self.keepn, self.cal_mult, self.cal_offs, self.chart)
+                       self.connect(self.cal_offs, self.probe)
+                       self.connect(self.shead, self.scope)
+                       
+                       #
+                       # Add a side-chain detector chain, with a different integrator, for sampling
+                       #   The reference channel data
+                       # This is used to derive the offset value for self.reference_level, used above
+                       #
+                       if (self.switch_mode == True):
+                               self.connect(self.detector, self.cmute, self.cintegrator, self.swkeep, self.cprobe)                     
+               return
+       
+       #
+       # Setup correlating interferometer mode
+       #
+       def setup_interferometer(self, setimode):
+               self.setup_radiometer_common(2)
+               
+               self.di = gr.deinterleave(gr.sizeof_gr_complex)
+               self.connect (self.u, self.di)
+               self.corr = gr.multiply_cc()
+               self.c2f = gr.complex_to_float()
+               
+               self.shead = (self.di, 0)
+               
+               # Channel 0 to multiply port 0
+               # Channel 1 to multiply port 1
+               if (self.use_notches == False):
+                       self.connect((self.di, 0), (self.corr, 0))
+                       self.connect((self.di, 1), (self.corr, 1))
+               else:
+                       self.connect((self.di, 0), self.notch_filt1, (self.corr, 0))
+                       self.connect((self.di, 1), self.notch_filt2, (self.corr, 0))
+               
+               #
+               # Multiplier (correlator) to complex-to-float, followed by integrator, etc
+               #
+               self.connect(self.corr, self.c2f, self.integrator, self.keepn, self.cal_mult, self.cal_offs, self.chart)
+               
+               #
+               # FFT scope gets only 1 channel
+               #  FIX THIS, by cross-correlating the *outputs* of two different FFTs, then display
+               #  Funky!
+               #
+               self.connect(self.shead, self.scope)
+               
+               #
+               # Output of correlator/integrator chain to probe
+               #
+               self.connect(self.cal_offs, self.probe)
+               
+               return
+       
+       #
+       # Setup SETI mode
+       #
+       def setup_seti(self):
+               self.connect (self.shead, self.fft_bandpass, self.scope)
+               return
+       
+       def setup_usrp(self):
+               
+               if (self.usrp2 == False):
+                       if (self.dual_mode == False and self.interferometer == False):
+                               if (self.decim > 4):
+                                       self.u = usrp.source_c(decim_rate=self.decim,fusb_block_size=8192)
+                               else:
+                                       self.u = usrp.source_c(decim_rate=self.decim,fusb_block_size=8192, fpga_filename="std_4rx_0tx.rbf")
+                               self.u.set_mux(usrp.determine_rx_mux_value(self.u, self.rx_subdev_spec))
+                               # determine the daughterboard subdevice we're using
+                               self.subdev[0] = usrp.selected_subdev(self.u, self.rx_subdev_spec)
+                               self.subdev[1] = self.subdev[0]
+                               self.cardtype = self.subdev[0].dbid()
+                       else:
+                               self.u=usrp.source_c(decim_rate=self.decim, nchan=2,fusb_block_size=8192)
+                               self.subdev[0] = usrp.selected_subdev(self.u, (0, 0))
+                               self.subdev[1] = usrp.selected_subdev(self.u, (1, 0))
+                               self.cardtype = self.subdev[0].dbid()
+                               self.u.set_mux(0x32103210)
+                               c1 = self.subdev[0].name()
+                               c2 = self.subdev[1].name()
+                               if (c1 != c2):
+                                       print "Must have identical cardtypes for --dual_mode or --interferometer"
+                                       sys.exit(1)
+                               #
+                               # Set 8-bit mode
+                               #
+                               
+                               width = 8
+                               shift = 8
+                               format = self.u.make_format(width, shift)
+                               r = self.u.set_format(format)
+               else:
+                       if (self.dual_mode == True or self.interferometer == True):
+                               print "Cannot use dual_mode or interferometer with single USRP2"
+                               sys.exit(1)
+                       self.u = usrp2.source_32fc(self.interface, self.mac_addr)
+                       self.u.set_decim (self.decim)
+                       self.cardtype = self.u.daughterboard_id()
 
 def main ():
-    app = stdgui.stdapp(app_flow_graph, "RADIO ASTRONOMY SPECTRAL/CONTINUUM RECEIVER: $Revision: 6077 $", nstatus=1)
-    app.MainLoop()
+       app = stdgui2.stdapp(app_flow_graph, "RADIO ASTRONOMY SPECTRAL/CONTINUUM RECEIVER: $Revision: 10631 $", nstatus=1)
+       app.MainLoop()
 
 if __name__ == '__main__':
-    main ()
+       main ()