
SD/MMC Bootloader
Specification

Author: Arnim Läuger

arniml@opencores.org

Rev. 3.2

March 16, 2006

OpenCores SD/MMC Bootloader Specification 16-Mar-2006

This page has been intentionally left blank.

www.opencores.org Rev 3.2 ii

OpenCores SD/MMC Bootloader Specification 16-Mar-2006

Revision History

Rev. Date Author Description
1.0 27-Feb-2005 Arnim Läuger First Version
2.0 09-Mar-2005 Arnim Läuger Update for set concept
3.0 14-Apr-2005 Arnim Läuger Handshaking information
3.1 16-Apr-2005 Arnim Läuger Formatting
3.2 16-Mar-2006 Arnim Läuger Detailed description of generic parameters

Formatting and typos fixed

www.opencores.org Rev 3.2 iii

OpenCores SD/MMC Bootloader Specification 16-Mar-2006

Contents
INTRODUCTION...1

ARCHITECTURE...2

OPERATION...5

INTEGRATION...8

IO PORTS..11

www.opencores.org Rev 3.2 iv

OpenCores SD/MMC Bootloader Specification 16-Mar-2006

1
Introduction

The SD/MMC Bootloader is a CPLD design that manages configuration and bootstrap-
ping of FPGAs. It is able to retrieve the required data from SecureDigital (SD) cards or
MultiMediaCards (MMC) and manages the FPGA configuration process. SD cards as
well as MMCs are operated in SPI mode which is part of both standards thus eliminating
the need for dedicated implementations. The SD/MMC Bootloader fits both. Beyond con-
figuration, this core supports a bootstrapping strategy where multiple images are stored
on one single memory card.

For example consider a system completely based on SRAM. The bootloader provides an
initial configuration data from the first image to the FPGA. This image contains a design
which pulls the next image from the memory card and transfers this data to SRAM. In the
last step, the final FPGA design is loaded from the third image.

Features
� Configuration mode: configures SRAM based FPGAs via slave serial mode (Xilinx and

Altera)
� Data mode: provides stored data over a simple synchronous serial interface
� Broad compatability using SPI mode

� SecureDigital cards using dedicated initialization command
� MultiMediaCards (see below)

� Operation triggered by power-up or card insertion

The SD/MMC Bootloader project is maintained and released on the OpenCores web serv-
er at

http://www.opencores.org/projects.cgi/web/spi_boot/overview/

Updates of this core can be obtained via the project pages.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCURE-
MENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTER-
RUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

www.opencores.org Rev 3.2 1 of 11

OpenCores SD/MMC Bootloader Specification 16-Mar-2006

2
Architecture

The architecture of the SD/MMC Bootloader is depicted in Figure 1. It consists of the
controller and command FSMs, an SPI port, two config/data ports and three counters.

Controller FSM

The controller FSM manages the overall functionality of the core. On one hand, this in-
cludes the complete SD/MMC SPI mode protocol with initialization, data retrieval and
abort. On the other hand, configuration and data requests are handled.

Command FSM

The command FSM sequences each single SPI mode command and generates the
corresponding bit stream. Each sequence consists of the command itself, the card's
response and optional data. Whenever this sequence has finished, the controller FSM is
flagged, triggering it to step to the next command.

Bit Counter

The bit counter provides a generic counting service to the command FSM. It times each
part of a command sequence and generates an overflow indicator to the command FSM.

www.opencores.org Rev 3.2 2 of 11

Figure 1: SD/MMC Bootloader block diagram

controller
FSM

spi_data

controlcontrol

status

config_n

cfg_init_n
config
port

cfg_done

data
port

SPI
port

spi_clk

spi_cs_n

spi_data_in

spi_data_out

cmd
FSM

spi_data

cfg_clk

cfg_dat

start

dat_done MMC
comp.

bit
cnt

img
cnt

mode

set_sel

detached

state
finished

status

cnt

OpenCores SD/MMC Bootloader Specification 16-Mar-2006

Image Counter

The image counter tracks the number of the current image. It increments according to the
instructions of the controller FSM.

MMC Compatability Counter

For full compatability with the MMC standard it is required to initialize the card with a
maximum clock frequency of 400 kHz. The clock division is done with the MMC com-
patibility counter which signals its overflow to the bit counter. As soon as the initializa-
tion phase has finished, the MMC compat counter is disabled by the controller FSM.

SPI Port

The SPI port connects to the pins of the SD or MM card according to Table 1.

Signal Connector Description
spi_clk Pin 5, CLK Clock
spi_cs_n Pin 1, CS Chip Select (Active low)
spi_data_in Pin 7, DataOut Card to Host Data and Status
spi_data_out Pin 2, DataIn Host to Card Commands and Data

Table 1: SD/MMC connections of SPI port

Furthermore, this port contains an output enable signal to put all outputs to tri-state.

Configuration Port

This port interfaces to the configuration facilities of the FPGA. It matches both Altera
and Xilinx products. The mapping is given in Table 2.

Signal Altera Xilinx Description
config_n nCONFIG PROGRAM# Initiates FPGA configuration sequence
cgf_init_n nSTATUS INIT# Rising edge indicates end of init
cfg_done CONF_DONE DONE Loading the configuration completed
cfg_clk DCLK CCLK Configuration clock
cfg_dat DATA0 DIN Configuration data

Table 2: Configuration port mapping

Data Port

The data port accepts control signals that control the sequence when reading multiple im-
ages and sets from the card. Table 3 describes their meaning.

Signal Description
start Initiates configuration sequence when asserted low
mode Mode selector: 0

�
 configuration mode, 1

�
 data mode

dat_done Loading in data mode completed
detached Indication that the SPI port outputs are tri-stated
set_sel Set selection

Table 3: Data port signals

Memory Organization

Data on the card is paritioned into sets, with each set consisting of one or more images.
Sets are a static containers while images form the dynamic part of this two-fold scheme.
The core automatically increments its image counter whenever an image is requested via

www.opencores.org Rev 3.2 3 of 11

OpenCores SD/MMC Bootloader Specification 16-Mar-2006

the start trigger. Hence the dynamic attribute of images. The address offset for the im-
ages involved is calculated by the set selection inputs. They are applied externally and
are static during a bootstrapping sequence.

Figure 2 shows the generic memory organization.

Parameters in Figure 2 are defined as follows (see also Table 4)
� bpi, bits per image: Number of bits required for the image address range.

bpi = 18
�

 image contains 218 = 256 KB
� i: Number of images within a set.
� m: Width of set counter.

m = 2
�

 22 = 4 images
� s: Number of sets on card.
� p: Width of set selection vector.

p = 4
�

 24 = 16 sets

www.opencores.org Rev 3.2 4 of 11

Figure 2: Memory organization

Image 0

Image 1

...

Image i−1

Set 1

Image 0

Image 1

...

Image i−1

Set s−1

((p−1)*m)*bpi2

((p−1)*m+1)*bpi2

((p−1)*m+2)*bpi2

((p−1)*m+m−1)*bpi2

(2*m)*bpi2

(1*m+m−1)*bpi2

(1*m+2)*bpi2

(1*m+1)*bpi2

(1*m)*bpi2

1*bpi2

2*bpi2

(m−1)*bpi2

Image 0

Image 1

...

Image i−1

Set 0

...

0

OpenCores SD/MMC Bootloader Specification 16-Mar-2006

3
Operation

The SD/MMC Bootloader has three operation states coupled to the interaction with the
memory card. After reset, the core is in initialization state and automatically configures
the SD or MM card. Next is the idle state where the core deactivates its outputs on the
SPI interface. Upon an external request, the core switches to the transfer state and re-
quests data from the memory card. The transfer state itself has two modes for either con-
figuring an FPGA or simply passing through the card's data.

Initialization State

The flow diagram of the initialization state is shown in Figure 3.

www.opencores.org Rev 3.2 5 of 11

Figure 3: Initialization flow diagram

Power up

CMD0

GO_IDLE_STATE

CMD55

APP_CMD

Response ok?

ACMD41

SEND_OP_CMD

Card idle?

CMD1

SEND_OP_CMD

Card idle?

CMD16

SET_BLOCKLEN

Wait for start

Yes

Yes

No

Yes

NoNo

OpenCores SD/MMC Bootloader Specification 16-Mar-2006

After reset, the core remains in the power up state spending a total of 144 clock cycles
before the SPI interface is activated. This is more than twice the time the card needs to
initialize its internal states (specified to 64 clock cycles). The extra time is to eliminate
uncertainties both in power ramp up and card start up. If the application is time critical
and there is an external power supply monitor it is safe to reduce the power up time to
something around 74 clocks. This modification has to be applied to the VHDL source
code of the core.

The first command issued by the core is GO_IDLE_STATE (CMD0) with parallel asser-
tion of CS. This resets the card and puts it in SPI mode. Them the core sends the com-
mand APP_CMD (CMD55) to escape the next extended command. MultiMediaCards
will respond to this with an illegal command error. The core detects this and uses CMD1
in the further process. In both ways (CMD55 + ACMD41 and CMD1) the idle status of
the card is polled repeatedly. Once it left idle state, the core sets the desired block length
with SET_BLOCKLEN (CMD16). The block length is derived from the generic parame-
ter width_bit_cnt (refer to Table 4).

The core is now idle and SPI output signals are tri-stated. Output pin detached is '1'.

Transfer State

Whenever a start trigger is detected, the core turns to transfer state. The trigger consists
of a low-to-high transition of the start input. To allow automatic operation, the core
also treats a constant high level at start as a trigger after reset. I.e. when the core
reaches the idle state for the first time, it continues immediately when start is high.
For subsequent loops through transfer and idle state start has to go low and high again.

When going from idle to transfer mode, the core samples the mode input which deter-
mines whether the transfer should be done in configuration or data mode.

www.opencores.org Rev 3.2 6 of 11

Figure 4: Transfer flow diagram

CMD18

READ_MULTIPLE_BLOCKS

Wait for start

mode = 1?

Read block

???_done?

CMD12

STOP_TRANSMISSION

Activate config_n

cfg_init_n low?

Deactivate config_n

cfg_init_n high?

Yes

No

start

No

Yes

No

Yes

No

Yes

OpenCores SD/MMC Bootloader Specification 16-Mar-2006

Configuration and data mode are the same except that in configuration mode a configura-
tion cycle for the FPGA is generated. This cycle is similar for Altera and Xilinx devices
(also refer to Table 2):

1. Activation of config_n
�

 configuration memory is cleared
2. Wait for low level on cfg_init_n

�
 FPGA acknowledges assertion of config_n

3. Wait for high level on cfg_init_n
�

 memory cleared, ready for configuration data

This sequence is skipped for data mode. The core continues with the data transfer itself in
both modes.

First step is to request a block of data by sending READ_MULTIPLE_BLOCKS com-
mand (CMD18). The address of the first block depends on the selected set and the current
value of the image counter. Starting from 0, it counts the number of images transferred
and the start address of an image is derived from the following formula

start _address � 2num_bits_per_image ��� cnt img � set � 2width_img_cnt �

As soon as the card has retrieved the specified block, the bit stream is presented at the
cfg_clk and cfg_dat outputs. Data at cfg_dat can be sampled with the rising
edge of cfg_clk. The card now sends one block after another without intervention of
the core. Configuration clock and data outputs are only operated when there is a valid bit
stream from the card. I.e. during gaps between two blocks cfg_clk remains on high
level. It changes from high to low for the next valid bit on cfg_dat.

This sequence is terminated when both cfg_done and dat_done are activated. The
configuration clock is stopped immediately and the core sends STOP_TRANSMISSION
(CMD12) to the card. It may take some time before the core is finally in idle state again
depending on the block size and the time the done signals have been activated.

www.opencores.org Rev 3.2 7 of 11

OpenCores SD/MMC Bootloader Specification 16-Mar-2006

4
Integration

This chapter provides informations on the integration of the SD/MMC Bootloader in an
FPGA system.

Configuration Timing

As written above, the configuration clock is stopped immediately when the core samples
a high level on both cfg_done and dat_done. The intention is to prevent any un-
wanted data bits to be transferred to the FPGA. This scheme requires on the other hand
that the FPGA has terminated its configuration process at this time. For Spartan IIe de-
vices (and probably others) it is therefore necessary to program the DONE pin to the last
cycle of the startup sequence (one clock cycle earlier is probably also ok). With the de-
fault settings of Xilinx WebPack the FPGA will not be able to finish its startup sequence
because DONE is asserted too early.

There is no experience so far with Altera devices.

Writing Data to the Card

Downloading the configuration data to the card is a straight forward process. The images
have to be written starting at dedicated locations. For the provided toplevel designs, these
locations are multiples of 256 K. I.e. 0, 0x40000, 0x80000 and so forth.

dd (part of the GNU coreutils) serves this purpose:

$ dd if=ram_loader.bin of=/dev/sdX bs=512
$ dd if=pongrom_6.bin of=/dev/sdX bs=512 seek=512
$ dd if=pacman.bin of=/dev/sdX bs=512 seek=1024

The name of the device node depends on how the card reader is attached to the kernel.
For Linux systems this is most often something like /dev/sdX with X ranging from a-z.
Please note that it is essential to use the device without any trailing numbers as these re-
fer to partitions leading to wrong offsets for data written to the card.

All this works perfectly for my Spartan IIe device as this FPGA expects the configuration
data as it is delivered from the card: Consecutive bytes each with its most significant bit
first. Altera devices like the FLEX family are different here. They expect the bytes with
least significant bit first. Therefore, the configuration data has to be swapped bitwise be-
fore it is written to the card.

www.opencores.org Rev 3.2 8 of 11

OpenCores SD/MMC Bootloader Specification 16-Mar-2006

Schematic

A sample schematic for embedding SD/MMC Bootloader in an FPGA system is provided
in spi_boot_schematic.pdf. I use it to configure/boot the Xilinx Spartan IIe on BurchED's
B5-X300 board. SV2 fits the "SERIAL MODE" connector on this board but you will
have to add a separate wire from R6 to attach INIT. Please check the proper use of the
pull-up resistors for your specific board.

Only the configuration port has to be connected to the FPGA even in case the data mode
is not required and only one single configuration sequence should be applied. The core
will automatically start configuration as start and mode inputs are pulled high. When
configuration has finished (FPGA sets cfg_done), the core will remain in the idle state
because there is no further low-to-high transition at start.

Interfacing

The config port is connected to the respective FPGA as described in Table 2. The port is
intended for configuration with slave serial mode where the config clock is supplied by
the SD/MMC Bootloader core.

The interface of the data port consists of the start and mode inputs that are used to
trigger the transfer and to select the mode. Subsequent retrieval of images requires a low-
to-high transition of start. When start is brought to '1', mode has to be set to the re-
quired transfer mode. The core will when retrieve the image from the card and will apply
valid data at cfg_dat with the falling edge of cfg_clk (in both configuration and data
mode). Termination of the data transfer is indicated by dat_done set to '1'1. The core
will then finish the access to the card and will return to idle state where it waits for a new
start trigger. In idle state, the core tri-states all outputs of the SPI port and indicates
this by setting the output detached to '1'.

A design that requests one or more images can monitor detached to retrieve informa-
tion of the core's state. This output serves also as a handshake indicator for the start
trigger. The start input is sampled while detached is at '1'. When detached has
switched to '0', the FPGA design can safely pull start back to '0' to prepare the next
transfer which is typically initiated after asserting dat_done.

Generic Parameters

The spi_boot core can be tailored to the requirements of the user by several parameters.
This section discusses the toplevel generics listed in Table 4 in detail.

� width_set_sel_g
Defines the width of the set selection input vector. Ajust this to the number of sets you
intend to use.

� width_bit_cnt_g
Defines the width of the bit counter. To handle the full SPI protocol, the minimum
width is 6 bits. This results in the smallest possible resource requirement for the
counter while imposing the largest decrease on read performance.
In order to share CPLD resources, the bit counter is also used to time the length of a
read block. The minimum of 6 selects a block length of 8 bytes. A counter width of 12

1 Both dat_done and cfg_done have to be '1' to actually terminate the transfer.

www.opencores.org Rev 3.2 9 of 11

OpenCores SD/MMC Bootloader Specification 16-Mar-2006

allows to minimize the protocol overhead by increasing the block length to its maxi-
mum of 512 bytes in SPI mode.

� width_img_cnt_g
Defines the width of the image counter and thus the number of images. 0 selects one
image per set and results in lower resource usage when multi set operation is not re-
quired.

� num_bits_per_image_g
Defines the number of bits to address one single image. 2num_bits_per_image_g is the size of
one image in bytes.

� sd_init_g
SD cards require CMD55/ACMD41 instead of CMD1 for initialization. Setting this
parameter to one instructs the core to also probe with CMD55/ACMD41. When using
only MMC, sd_init_g can be set to 0 to decrease resource usage.

� mmc_compat_clk_div_g
Defines rollover value of the MMC compatibility clock divider. Old MM cards and
some SD cards require that the clock frequency during initialization phase is not high-
er than 400 kHz. Select a value which satisfies

400 kHz � f(clk_i) / (mmc_compat_clk_div_g * 2)
For cards that accept initialization with a faster clock frequency, this parameter can be
set to 0 to decrease resources usage.

� width_mmc_clk_div_g
Defines the width of the MMC compatability clock divider. Adjust to

2width_mmc_clk_div_g � mmc_compat_clk_div_g.

Compatability

These cards have been tested with the SD/MMC Bootloader:
� Cannon 8 MB SD
� Hama 64 MB SD
� Panasonic 32 MB SD
� SanDisk 128 MB SD
� SanDisk 64 MB MMC
� SanDisk 64 MB SD

Some MMCs might fail with this core as not all cards support CMD18 (READ_MULTI-
PLE_BLOCK). Please consult the data sheet of your specific model. In case your MMC
does not implement CMD18 you might want to have a look at the FPGA MMC-Card
Config project at http://www.opencores.org/projects.cgi/web/mmcfpgaconfig/overview/

www.opencores.org Rev 3.2 10 of 11

OpenCores SD/MMC Bootloader Specification 16-Mar-2006

5
IO Ports

The following Table 4 shows the primary IO ports of spi_boot.

Port Width Dir Description
clk_i 1 In Clock input
reset_i 1 In Reset input – active level selected via generic
set_sel_i 1 – s In Set selection input
spi_clk_o 1 Out SPI clock output
spi_cs_n_o 1 Out SPI chip select – low active
spi_data_in_i 1 In SPI data from card
spi_data_out_o 1 Out SPI data to card
spi_en_outs_o 1 Out Tristate driver enable for SPI outputs
start_i 1 In Start trigger
mode_i 1 In Mode selection
config_n_o 1 Out Begin configuration
cfg_init_n_i 1 In Configuration init handshake – low active
cfg_done_i 1 In Configuration done
dat_done_i 1 In Data transfer done
datached_o 1 Out SPI port outputs tri-stated
cfg_clk_o 1 Out Configuration clock output
cfg_dat_o 1 Out Configuration data

Generic Value Description
width_set_sel 1 – p Width of set selection, 2p = s sets available
width_bit_cnt 6 – 12 Width of bit counter
width_img_cnt 0 – m Width of image counter, 2m = i images available
num_bits_per_
img

0 – 31 Number of bits required to address one image

sd_init 0, 1 SD specific initialization command
1 : use ACMD41
0 : do not use ACMD41

mmc_compat_
clk_div

0 – n Maximum count for MMC compatibility counter
0 : do not implement MMC compatibility counter

width_mmc_cl
k_div

0 – o Width of MMC compatibility counter

reset_level 0, 1 Active level of reset_i
Table 4: List of IO ports

www.opencores.org Rev 3.2 11 of 11

