
AEMB 32-bit Microprocessor Core Datasheet

Shawn Tan Ser Ngiap
shawn.tan@aeste.net

November 11, 2007

AEMB 32-bit Microprocessor Core
Copyright (C) 2004-2007 Shawn Tan Ser Ngiap (shawn.tan@aeste.net)

This file is part of AEMB.

AEMB is free software: you can redistribute it and/or modify it under the terms of the GNU
Lesser General Public License as published by the Free Software Foundation, either version 3
of the License, or (at your option) any later version.

AEMB is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICU-
LAR PURPOSE. See the GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with AEMB.
If not, see http://www.gnu.org/licenses/.

Contents

1 Introduction 3

2 External Signals 4

2.1 Ports . 4

3 Architecture Blocks 6

3.1 Top Level Cores . 6

3.2 Core Parameters . 6

4 Functional Operation 8

4.1 Reset Operation . 8

4.2 Pipeline Operation 8

4.3 Interrupt Operation 8

5 Software & Simulation 9

6 Implementation 10

7 License 11

1 Introduction

The AEMB is a clean room implementation of the EDK3.2 soft-
ware compatible Microblaze core using information from the In-
ternet. It is cycle and instruction compatible to the MB for most
software commands. It is not meant as a drop in replacement for
the Microblaze as it is not architecturally compatible. It uses the
WISHBONE bus instead of LMB/OPB.

This is a CPU core that is capable of moving and manipulating
data to and from memory. It does not have any peripherals nor
interrupt controllers although support for external interrupts is
provided. Any peripherals and their respective registers could be
mapped to the data memory space. It has a separate instruction,
data and FSL bus.

This core is fairly similar to the original Microblaze from the point
of view of software. Therefore, this list of features are mainly for
the benefit of people unfamiliar with the original Some of the main
features are:

1. Harvard architecture with a separate 32-bit instruction and
data busses. The address space for each bus can be separately
configured with core parameters.

2. Pipelined operation with a 3-stage integer pipeline. The
pipeline is capable of executing one instruction per clock.
This short pipeline allows it to context switch quickly.

3. Support for hardware multiplier and barrel shifter. Imple-
mentation of a single cycle multiplier and barrel shifter will
improve software performance.

4. Support for GET/PUT instructions. The GET/PUT in-
structions are implemented as a seperate FSL bus. Other
peripherals or FIFOs can be connected to this bus.

5. Small core size with an excellent performance. It has an
equivalent gate count of about 38k gates at 136 MHz in a
Xilinx Virtex4 FPGA (without multiplier).

6. Mature software development toolchain as it is software com-
patible with the original. Operating system support for the
original core includes uClinux/FreeRTOS.

2 External Signals

The core uses a WISHBONE compatible bus for it’s on-chip bus.
It is cycle compatible with WISHBONE classic cycles. This allows
the core to be quickly integrated with many other devices that use
this bus. It supports the main legacy bus signals. In addition to
this, it also uses some other signals that are described below.

2.1 Ports

The core ports are broken into four groups: Instruction Bus, Data
Bus, FSL Bus and System signals. They are all listed in table
2.1 with short descriptions. All the signals are active high as per
WISHBONE documentation.

The signal functions should all be quite self explanatory. For de-
tailed cycle arbitration and timings, please refer to the official
WISHBONE specifications. Some of the WISHBONE signals are
missing as they may not be necessary like the write-enable signal
for the instruction bus.

NAME SIZE I/O DESCRIPTION
IWB ADR O 30 Out Instruction bus address
IWB STB O 1 Out Instruction bus request/strobe
IWB DAT I 32 In Instruction bus data word
IWB ACK I 1 In Instruction bus acknowledge
DWB ADR O 30 Out Data bus address
DWB DAT O 32 Out Data bus data write word
DWB STB O 1 Out Data bus request/strobe
DWB WRE O 1 Out Data bus write/read enable
DWB SEL O 4 Out Data bus byte lane select
DWB DAT I 32 In Data bus data read word
DWB ACK I 1 In Data bus acknowledge
FSL ADR O 13 Out FSL bus address
FSL DAT O 32 Out FSL bus data write word
FSL STB O 1 Out FSL bus request/strobe
FSL WRE O 1 Out FSL bus write/read enable
FSL DAT I 32 In FSL bus data read word
FSL ACK I 1 In FSL bus acknowledge
SYS INT I 1 In Positive edge triggered interrupt
SYS CLK I 1 In Master clock signal
SYS RST I 1 In Master active low reset

Table 2.1: External signal names and descriptions.

AEMB 32-bit Microprocessor Core Datasheet 5

3 Architecture Blocks

The top-level core (CORE) has a separate instruction and data
memory bus without cache memory. This can be used as part of
an SoC with internal devices attached to the data memory bus.
It is also the main top-level core as it contains all the functional
sub-blocks. There are two top-level cores supplied.

3.1 Top Level Cores

All designs should use the EDK32 top level core. The old CORE
top level is only available for compatibility reasons. It will be
eventually phased off once the EDK32 top level core matures. The
CORE top level will no longer be supported.

3.2 Core Parameters

The EDK32 core includes an optional hardware multiplier and bar-
rel shifter. The optional hardware components are configured using
core parameters. The width of both the instruction and data bus
can be specified in the core parameters.

Figure 3.1: AEMB block hierarchy and links

AEMB 32-bit Microprocessor Core Datasheet 7

4 Functional Operation

Although functionally similar to the Microblaze, the AEMB is not
a drop-in substition. The AEMB can be used as an alternative
core that can execute compatible code. This chapter documents
some of the operation details of the core.

4.1 Reset Operation

The master reset signal for the core is SYS RST I. During reset, all
the internal registers for the core are set to their reset values. All
interrupts are disabled by the MSR IE register value. After reset,
the processor begins to fetch instructions from memory location
0x00000000.

4.2 Pipeline Operation

The integer pipeline for the AEMB is a single issue and in-order
execution pipeline. It consists of three main stages: FETCH &
DECODE, LOAD & EXECUTE and BRANCH & STORE. Each
stage is synchronised onto the positive edge SYS CLK I signal.

The pipeline is stalled for any incomplete memory operation. ThisStalls
means that, unless the memory is fast enough, the processor will
stall the entire pipeline. This includes both instruction and data
memory access. During a branch it is possible for the AEMB to
use a branch delay slot.

4.3 Interrupt Operation

The core has support for positive edge triggered interrupt on the
SYS INT I signal. The interrupt latency is between 3-5 cycles.
Interrupts will not trigger between non-atomic instructions such
as IMMI.

5 Software & Simulation

The AEMB core is capable of executing C code compiled with the
Microblaze GCC toolchain. Development of the core was simulated
using GPLCVER 2.11a and Icarus Verilog 0.8.5 simulators. Simu-
latio code was compiled with GCC 3.4.1 (Xilinx EDK 8.1.01 Build
EDK I.19.4 061107). However, since the core does not implement
certain instructions, certain compilation flags should be used.

$ mb-gcc -g -mxl-soft-div -msoft-float

Some of the hardware components are parameterisable. If a hard-
ware multiplier and barrel shifter is available, other compilation
flags can be used to speed up software performance.

$ mb-gcc -g -mno-xl-soft-mul -mxl-barrel-shift

An example compilation script is provided in the /sw/gccrom shell
script. This script takes any optional GCC arguments including
the C filename. It will generate a suitable simulation ROM and
place it in the /sim/aeMB.rom file. The /sw/c/aeMB testbench.c
file shows an example C algorithm to calculate Fibonnaci numbers.

$./gccrom c/aeMB_testbench.c

The /sim/verilog/testbench.v verilog file is an example simulation
testbench. This simulation will load and run the software that is
located in the rom file. It is highly tailored to run tests based on the
example testbench C code. The /sim/cversim and /sim/iversim
are scripts to run the simulation with either CVER or Icarus ver-
ilog. These scripts take the programme arguments as well as the
simulation testbench file to use.

$./cversim verilog/edk32.v

All these files are provided as examples and should be used as a! →
baseline. For user applications, custom C software and testbench
code should be written, which can be based on these files and
scripts.

6 Implementation

These non-constrained synthesis results from Xilinx ISE v9.1i are
for the core. These are not a benchmark but are useful as an! →
estimate of chip resources and performance.

The core has been envisioned to be used as part of a larger SoC.
Hence, it has been designed with a small size as an objective.

It is possible to further optimise the design as the critical path runs
through the main ALU. About 44% of this critical path is due to
routing, not logic.

Device utilization summary:

Selected Device : 4vlx25ff668-12

Number of Slices: 1268 out of 10752 11%
Number of Slice Flip Flops: 272 out of 21504 1%
Number of 4 input LUTs: 2082 out of 21504 9%

Number used as logic: 1698
Number used as RAMs: 384

Number of IOs: 248
Number of bonded IOBs: 248 out of 448 55%
Number of GCLKs: 1 out of 32 3%

Timing Summary:

Speed Grade: -12

Minimum period: 7.315ns (Maximum Frequency: 136.710MHz)
Minimum input arrival time before clock: 7.404ns
Maximum output required time after clock: 4.005ns
Maximum combinational path delay: No path found

7 License

GNU LESSER GENERAL PUBLIC LICENSE Version 3, 29 June 2007

Copyright (C) 2007 Free Software Foundation, Inc. ¡http://fsf.org/¿ Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.

This version of the GNU Lesser General Public License incorporates the terms and conditions of version 3 of the GNU General Public License,
supplemented by the additional permissions listed below.

0. Additional Definitions.

As used herein, ”this License” refers to version 3 of the GNU Lesser General Public License, and the ”GNU GPL” refers to version 3 of the
GNU General Public License.

”The Library” refers to a covered work governed by this License, other than an Application or a Combined Work as defined below.

An ”Application” is any work that makes use of an interface provided by the Library, but which is not otherwise based on the Library.
Defining a subclass of a class defined by the Library is deemed a mode of using an interface provided by the Library.

A ”Combined Work” is a work produced by combining or linking an Application with the Library. The particular version of the Library with
which the Combined Work was made is also called the ”Linked Version”.

The ”Minimal Corresponding Source” for a Combined Work means the Corresponding Source for the Combined Work, excluding any source
code for portions of the Combined Work that, considered in isolation, are based on the Application, and not on the Linked Version.

The ”Corresponding Application Code” for a Combined Work means the object code and/or source code for the Application, including any
data and utility programs needed for reproducing the Combined Work from the Application, but excluding the System Libraries of the
Combined Work.

1. Exception to Section 3 of the GNU GPL.

You may convey a covered work under sections 3 and 4 of this License without being bound by section 3 of the GNU GPL.

2. Conveying Modified Versions.

If you modify a copy of the Library, and, in your modifications, a facility refers to a function or data to be supplied by an Application that
uses the facility (other than as an argument passed when the facility is invoked), then you may convey a copy of the modified version:

a) under this License, provided that you make a good faith effort to ensure that, in the event an Application does not supply the function or
data, the facility still operates, and performs whatever part of its purpose remains meaningful, or

b) under the GNU GPL, with none of the additional permissions of this License applicable to that copy.

3. Object Code Incorporating Material from Library Header Files.

The object code form of an Application may incorporate material from a header file that is part of the Library. You may convey such object
code under terms of your choice, provided that, if the incorporated material is not limited to numerical parameters, data structure layouts
and accessors, or small macros, inline functions and templates (ten or fewer lines in length), you do both of the following:

a) Give prominent notice with each copy of the object code that the Library is used in it and that the Library and its use are covered by this
License.

b) Accompany the object code with a copy of the GNU GPL and this license document.

4. Combined Works.

You may convey a Combined Work under terms of your choice that, taken together, effectively do not restrict modification of the portions of
the Library contained in the Combined Work and reverse engineering for debugging such modifications, if you also do each of the following:

a) Give prominent notice with each copy of the Combined Work that the Library is used in it and that the Library and its use are covered
by this License.

b) Accompany the Combined Work with a copy of the GNU GPL and this license document.

c) For a Combined Work that displays copyright notices during execution, include the copyright notice for the Library among these notices,
as well as a reference directing the user to the copies of the GNU GPL and this license document.

d) Do one of the following:

0) Convey the Minimal Corresponding Source under the terms of this License, and the Corresponding Application Code in a form suitable
for, and under terms that permit, the user to recombine or relink the Application with a modified version of the Linked Version to produce
a modified Combined Work, in the manner specified by section 6 of the GNU GPL for conveying Corresponding Source.

1) Use a suitable shared library mechanism for linking with the Library. A suitable mechanism is one that (a) uses at run time a copy of
the Library already present on the user’s computer system, and (b) will operate properly with a modified version of the Library that is
interface-compatible with the Linked Version.

e) Provide Installation Information, but only if you would otherwise be required to provide such information under section 6 of the GNU
GPL, and only to the extent that such information is necessary to install and execute a modified version of the Combined Work produced by
recombining or relinking the Application with a modified version of the Linked Version. (If you use option 4d0, the Installation Information
must accompany the Minimal Corresponding Source and Corresponding Application Code. If you use option 4d1, you must provide the
Installation Information in the manner specified by section 6 of the GNU GPL for conveying Corresponding Source.)

5. Combined Libraries.

You may place library facilities that are a work based on the Library side by side in a single library together with other library facilities that
are not Applications and are not covered by this License, and convey such a combined library under terms of your choice, if you do both of
the following:

a) Accompany the combined library with a copy of the same work based on the Library, uncombined with any other library facilities, conveyed
under the terms of this License.

b) Give prominent notice with the combined library that part of it is a work based on the Library, and explaining where to find the
accompanying uncombined form of the same work.

6. Revised Versions of the GNU Lesser General Public License.

AEMB 32-bit Microprocessor Core Datasheet 12

The Free Software Foundation may publish revised and/or new versions of the GNU Lesser General Public License from time to time. Such
new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Library as you received it specifies that a certain numbered version of the
GNU Lesser General Public License ”or any later version” applies to it, you have the option of following the terms and conditions either of
that published version or of any later version published by the Free Software Foundation. If the Library as you received it does not specify
a version number of the GNU Lesser General Public License, you may choose any version of the GNU Lesser General Public License ever
published by the Free Software Foundation.

If the Library as you received it specifies that a proxy can decide whether future versions of the GNU Lesser General Public License shall
apply, that proxy’s public statement of acceptance of any version is permanent authorization for you to choose that version for the Library.

AEMB 32-bit Microprocessor Core Datasheet 13

