X-Git-Url: https://git.gag.com/?a=blobdiff_plain;f=splat.cpp;h=994ccfb90af7f1a07ecb65cbaff8e73770f2db85;hb=49350c09f112a613dc33e9a5e116a1a3c0f06997;hp=2fe6fd42a616996b8233deeb5be5e240693427ba;hpb=996bd803ab22572b622b684221c9a8ca04b3f63a;p=debian%2Fsplat diff --git a/splat.cpp b/splat.cpp index 2fe6fd4..994ccfb 100644 --- a/splat.cpp +++ b/splat.cpp @@ -1,29 +1,26 @@ -/**************************************************************************** -* SPLAT: A Terrain Analysis Program * -* Copyright John A. Magliacane, KD2BD 1997-2004 * -* Last update: 24-Jan-2004 * -***************************************************************************** -* * -* This program is free software; you can redistribute it and/or modify it * -* under the terms of the GNU General Public License as published by the * -* Free Software Foundation; either version 2 of the License or any later * -* version. * -* * -* This program is distributed in the hope that it will useful, but WITHOUT * -* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * -* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * -* for more details. * -* * -***************************************************************************** -* * -* Extensively modified by J. D. McDonald in Jan. 2004 to include * -* the Longley-Rice propagation model using C++ code from NTIA/ITS. * -* * -* See: http://elbert.its.bldrdoc.gov/itm.html * -* * -***************************************************************************** - g++ -Wall -O3 -s -lm -lbz2 -fomit-frame-pointer itm.cpp splat.cpp -o splat -*****************************************************************************/ +/****************************************************************************\ +* SPLAT!: An RF Signal Path Loss And Terrain Analysis Tool * +****************************************************************************** +* Project started in 1997 by John A. Magliacane, KD2BD * +* Last update: 19-Oct-2007 * +****************************************************************************** +* Please consult the documentation for a complete list of * +* individuals who have contributed to this project. * +****************************************************************************** +* * +* This program is free software; you can redistribute it and/or modify it * +* under the terms of the GNU General Public License as published by the * +* Free Software Foundation; either version 2 of the License or any later * +* version. * +* * +* This program is distributed in the hope that it will useful, but WITHOUT * +* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * +* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * +* for more details. * +* * +****************************************************************************** +* g++ -Wall -O3 -s -lm -lbz2 -fomit-frame-pointer itm.cpp splat.cpp -o splat * +\****************************************************************************/ #include #include @@ -33,71 +30,81 @@ #include #include #include "fontdata.h" -#include "smallfont.h" #define GAMMA 2.5 -#define MAXSLOTS 9 +#define MAXPAGES 9 #define BZBUFFER 65536 -#if MAXSLOTS==4 +#if MAXPAGES==4 #define ARRAYSIZE 4950 #endif -#if MAXSLOTS==9 +#if MAXPAGES==9 #define ARRAYSIZE 10870 #endif -#if MAXSLOTS==16 +#if MAXPAGES==16 #define ARRAYSIZE 19240 #endif -#if MAXSLOTS==25 +#if MAXPAGES==25 #define ARRAYSIZE 30025 #endif -char string[255], sdf_path[255], opened=0, *splat_version={"1.1.0"}; +char string[255], sdf_path[255], opened=0, *splat_version={"1.2.1"}; double TWOPI=6.283185307179586, HALFPI=1.570796326794896, PI=3.141592653589793, deg2rad=1.74532925199e-02, EARTHRADIUS=20902230.97, METERS_PER_MILE=1609.344, - METERS_PER_FOOT=0.3048, earthradius, max_range=0.0; - -int min_north=0, max_north=0, min_west=0, max_west=0, - max_elevation=0, min_elevation=0, bzerror; - -struct site { double lat; - double lon; - double alt; - char name[50]; - }; - -struct { float lat[ARRAYSIZE]; - float lon[ARRAYSIZE]; - float elevation[ARRAYSIZE]; - float distance[ARRAYSIZE]; - int length; - } path; - -struct { int min_north; - int max_north; - int min_west; - int max_west; - int max_el; - int min_el; - short data[1200][1200]; - unsigned char mask[1200][1200]; - } dem[MAXSLOTS]; - -struct { - double eps_dielect; - double sgm_conductivity; - double eno_ns_surfref; - double frq_mhz; - double conf; - double rel; - int radio_climate; - int pol; - } LR; + METERS_PER_FOOT=0.3048, KM_PER_MILE=1.609344, earthradius, + max_range=0.0, forced_erp=-1.0, fzone_clearance=0.6; + +int min_north=90, max_north=-90, min_west=360, max_west=-1, + max_elevation=-32768, min_elevation=32768, bzerror, maxdB=230; + +unsigned char got_elevation_pattern, got_azimuth_pattern, metric=0; + +struct site { double lat; + double lon; + float alt; + char name[50]; + char filename[255]; + } site; + +struct path { double lat[ARRAYSIZE]; + double lon[ARRAYSIZE]; + double elevation[ARRAYSIZE]; + double distance[ARRAYSIZE]; + int length; + } path; + +struct dem { int min_north; + int max_north; + int min_west; + int max_west; + int max_el; + int min_el; + short data[1200][1200]; + unsigned char mask[1200][1200]; + unsigned char signal[1200][1200]; + } dem[MAXPAGES]; + +struct LR { double eps_dielect; + double sgm_conductivity; + double eno_ns_surfref; + double frq_mhz; + double conf; + double rel; + double erp; + int radio_climate; + int pol; + float antenna_pattern[361][1001]; + } LR; + +struct region { unsigned char color[32][3]; + int level[32]; + int levels; + } region; double elev_l[ARRAYSIZE+10]; @@ -122,13 +129,35 @@ double arccos(double x, double y) return result; } +int ReduceAngle(double angle) +{ + /* This function normalizes the argument to + an integer angle between 0 and 180 degrees */ + + double temp; + + temp=acos(cos(angle*deg2rad)); + + return (int)rint(temp/deg2rad); +} + char *dec2dms(double decimal) { /* Converts decimal degrees to degrees, minutes, seconds, (DMS) and returns the result as a character string. */ - - int degrees, minutes, seconds; - double a, b, c, d; + + char sign; + int degrees, minutes, seconds; + double a, b, c, d; + + if (decimal<0.0) + { + decimal=-decimal; + sign=-1; + } + + else + sign=1; a=floor(decimal); b=60.0*(decimal-a); @@ -146,10 +175,41 @@ char *dec2dms(double decimal) seconds=59; string[0]=0; - sprintf(string,"%d%c %d\' %d\"", degrees, 176, minutes, seconds); + sprintf(string,"%d%c %d\' %d\"", degrees*sign, 176, minutes, seconds); return (string); } +int PutMask(double lat, double lon, int value) +{ + /* Lines, text, markings, and coverage areas are stored in a + mask that is combined with topology data when topographic + maps are generated by SPLAT!. This function sets and resets + bits in the mask based on the latitude and longitude of the + area pointed to. */ + + int x, y, indx; + char found; + + for (indx=0, found=0; indx=(double)dem[indx].min_north && lat<=(double)dem[indx].max_north && lon>=(double)dem[indx].min_west && lon<=(double)dem[indx].max_west) + found=1; + else + indx++; + + if (found) + { + x=(int)(1199.0*(lat-floor(lat))); + y=(int)(1199.0*(lon-floor(lon))); + + dem[indx].mask[x][y]=value; + + return (dem[indx].mask[x][y]); + } + + else + return -1; +} + int OrMask(double lat, double lon, int value) { /* Lines, text, markings, and coverage areas are stored in a @@ -158,14 +218,11 @@ int OrMask(double lat, double lon, int value) the mask based on the latitude and longitude of the area pointed to. */ - int x, y, indx, minlat, minlon; - char found; - - minlat=(int)floor(lat); - minlon=(int)floor(lon); + int x, y, indx; + char found; - for (indx=0, found=0; indx=(double)dem[indx].min_north && lat<=(double)dem[indx].max_north && lon>=(double)dem[indx].min_west && lon<=(double)dem[indx].max_west) found=1; else indx++; @@ -176,8 +233,10 @@ int OrMask(double lat, double lon, int value) y=(int)(1199.0*(lon-floor(lon))); dem[indx].mask[x][y]|=value; + return (dem[indx].mask[x][y]); } + else return -1; } @@ -190,27 +249,79 @@ int GetMask(double lat, double lon) return (OrMask(lat,lon,0)); } +int PutSignal(double lat, double lon, unsigned char signal) +{ + /* This function writes a signal level (0-255) + at the specified location for later recall. */ + + int x, y, indx; + char found; + + for (indx=0, found=0; indx=(double)dem[indx].min_north && lat<=(double)dem[indx].max_north && lon>=(double)dem[indx].min_west && lon<=(double)dem[indx].max_west) + found=1; + else + indx++; + + if (found) + { + x=(int)(1199.0*(lat-floor(lat))); + y=(int)(1199.0*(lon-floor(lon))); + + dem[indx].signal[x][y]=signal; + + return (dem[indx].signal[x][y]); + } + + else + return 0; +} + +unsigned char GetSignal(double lat, double lon) +{ + /* This function reads the signal level (0-255) at the + specified location that was previously written by the + complimentary PutSignal() function. */ + + int x, y, indx; + char found; + + for (indx=0, found=0; indx=(double)dem[indx].min_north && lat<=(double)dem[indx].max_north && lon>=(double)dem[indx].min_west && lon<=(double)dem[indx].max_west) + found=1; + else + indx++; + + if (found) + { + x=(int)(1199.0*(lat-floor(lat))); + y=(int)(1199.0*(lon-floor(lon))); + + return (dem[indx].signal[x][y]); + } + + else + return 0; +} + double GetElevation(struct site location) { /* This function returns the elevation (in feet) of any location represented by the digital elevation model data in memory. Function returns -5000.0 for locations not found in memory. */ - char found; - int x, y, indx, minlat, minlon; - double elevation; + char found; + int x, y, indx; + double elevation; elevation=-5000.0; - minlat=(int)floor(location.lat); - minlon=(int)floor(location.lon); - x=(int)(1199.0*(location.lat-floor(location.lat))); y=(int)(1199.0*(location.lon-floor(location.lon))); - for (indx=0, found=0; indx=(double)dem[indx].min_north && location.lat<=(double)dem[indx].max_north && location.lon>=(double)dem[indx].min_west && location.lon<=(double)dem[indx].max_west) { elevation=3.28084*dem[indx].data[x][y]; found=1; @@ -220,12 +331,37 @@ double GetElevation(struct site location) return elevation; } +int AddElevation(double lat, double lon, double height) +{ + /* This function adds a user-defined terrain feature + (in meters AGL) to the digital elevation model data + in memory. Does nothing and returns 0 for locations + not found in memory. */ + + char found; + int x, y, indx; + + x=(int)(1199.0*(lat-floor(lat))); + y=(int)(1199.0*(lon-floor(lon))); + + for (indx=0, found=0; indx=(double)dem[indx].min_north && lat<=(double)dem[indx].max_north && lon>=(double)dem[indx].min_west && lon<=(double)dem[indx].max_west) + { + dem[indx].data[x][y]+=(short)rint(height); + found=1; + } + } + + return found; +} + double Distance(struct site site1, struct site site2) { /* This function returns the great circle distance in miles between any two site locations. */ - double lat1, lon1, lat2, lon2, distance; + double lat1, lon1, lat2, lon2, distance; lat1=site1.lat*deg2rad; lon1=site1.lon*deg2rad; @@ -242,8 +378,8 @@ double Azimuth(struct site source, struct site destination) /* This function returns the azimuth (in degrees) to the destination as seen from the location of the source. */ - double dest_lat, dest_lon, src_lat, src_lon, - beta, azimuth, diff, num, den, fraction; + double dest_lat, dest_lon, src_lat, src_lon, + beta, azimuth, diff, num, den, fraction; dest_lat=destination.lat*deg2rad; dest_lon=destination.lon*deg2rad; @@ -289,10 +425,10 @@ double Azimuth(struct site source, struct site destination) return (azimuth/deg2rad); } -double ElevationAngle(struct site local, struct site remote) +double ElevationAngle(struct site source, struct site destination) { /* This function returns the angle of elevation (in degrees) - of the remote location as seen from the local site. + of the destination as seen from the source location. A positive result represents an angle of elevation (uptilt), while a negative result represents an angle of depression (downtilt), as referenced to a normal to the center of @@ -300,10 +436,10 @@ double ElevationAngle(struct site local, struct site remote) register double a, b, dx; - a=GetElevation(remote)+remote.alt+earthradius; - b=GetElevation(local)+local.alt+earthradius; + a=GetElevation(destination)+destination.alt+earthradius; + b=GetElevation(source)+source.alt+earthradius; - dx=5280.0*Distance(local,remote); + dx=5280.0*Distance(source,destination); /* Apply the Law of Cosines */ @@ -313,24 +449,35 @@ double ElevationAngle(struct site local, struct site remote) void ReadPath(struct site source, struct site destination) { /* This function generates a sequence of latitude and - longitude positions between a source location and - a destination along a great circle path, and stores - elevation and distance information for points along - that path in the "path" structure for later use. */ + longitude positions between source and destination + locations along a great circle path, and stores + elevation and distance information for points + along that path in the "path" structure. */ - double azimuth, distance, lat1, lon1, beta, - den, num, lat2, lon2, total_distance; - int x1, y1, c; - struct site tempsite; - - c=0; + int c; + double azimuth, distance, lat1, lon1, beta, den, num, + lat2, lon2, total_distance, x, y, path_length, + increment; + struct site tempsite; lat1=source.lat*deg2rad; lon1=source.lon*deg2rad; + + lat2=destination.lat*deg2rad; + lon2=destination.lon*deg2rad; + azimuth=Azimuth(source,destination)*deg2rad; + total_distance=Distance(source,destination); - for (distance=0; distance<=total_distance; distance+=0.04) + x=68755.0*acos(cos(lon1-lon2)); /* 1200 samples per degree */ + y=68755.0*acos(cos(lat1-lat2)); /* 68755 samples per radian */ + + path_length=sqrt((x*x)+(y*y)); /* Total number of samples */ + + increment=total_distance/path_length; /* Miles per sample */ + + for (distance=0, c=0; (distance<=total_distance && ccos_test_angle) + { + block=1; + first_obstruction_angle=((acos(cos_test_angle))/deg2rad)-90.0; + } + } + + if (block) + elevation=first_obstruction_angle; + + else + elevation=((acos(cos_xmtr_angle))/deg2rad)-90.0; - path.lat[c]=destination.lat; - path.lon[c]=destination.lon; - path.elevation[c]=GetElevation(destination); - path.distance[c]=total_distance; - c++; + path=temp; - path.length=c; + return elevation; } double AverageTerrain(struct site source, double azimuthx, double start_distance, double end_distance) @@ -399,9 +614,9 @@ double AverageTerrain(struct site source, double azimuthx, double start_distance memory to complete the survey (critical error), then -9999.0 is returned. */ - int c, samples, endpoint; - double beta, lat1, lon1, lat2, lon2, num, den, azimuth, terrain=0.0; - struct site destination; + int c, samples, endpoint; + double beta, lat1, lon1, lat2, lon2, num, den, azimuth, terrain=0.0; + struct site destination; lat1=source.lat*deg2rad; lon1=source.lon*deg2rad; @@ -490,9 +705,9 @@ double haat(struct site antenna) error occurs, such as a lack of SDF data to complete the survey, -5000.0 is returned. */ - int azi, c; - char error=0; - double terrain, avg_terrain, haat, sum=0.0; + int azi, c; + char error=0; + double terrain, avg_terrain, haat, sum=0.0; /* Calculate the average terrain between 2 and 10 miles from the antenna site at azimuths of 0, 45, 90, 135, @@ -522,6 +737,27 @@ double haat(struct site antenna) } } +float LonDiff(float lon1, float lon2) +{ + /* This function returns the short path longitudinal + difference between longitude1 and longitude2 + as an angle between -180.0 and +180.0 degrees. + If lon1 is west of lon2, the result is positive. + If lon1 is east of lon2, the result is negative. */ + + float diff; + + diff=lon1-lon2; + + if (diff<=-180.0) + diff+=360.0; + + if (diff>=180.0) + diff-=360.0; + + return diff; +} + void PlaceMarker(struct site location) { /* This function places text and marker data in the mask array @@ -546,7 +782,7 @@ void PlaceMarker(struct site location) lat=location.lat; lon=location.lon; - if (latxmin && lonymin) + if (latxmin && (LonDiff(lon,ymax)<0.0) && (LonDiff(lon,ymin)>0.0)) { p1=1.0/1200.0; p3=3.0/1200.0; @@ -561,7 +797,7 @@ void PlaceMarker(struct site location) /* Is Marker Position Clear Of Text Or Other Markers? */ for (x=lat-p3; (x<=xmax && x>=xmin && x<=lat+p3); x+=p1) - for (y=lon-p3; (y<=ymax && y>=ymin && y<=lon+p3); y+=p1) + for (y=lon-p3; (LonDiff(y,ymax)<=0.0) && (LonDiff(y,ymin)>=0.0) && (LonDiff(y,lon+p3)<=0.0); y+=p1) occupied|=(GetMask(x,y)&2); if (occupied==0) @@ -573,7 +809,7 @@ void PlaceMarker(struct site location) label_length=p1*(double)(strlen(location.name)<<3); - if (((lon+label_length)<=ymax) && (lon-label_length)>=ymin) + if ((LonDiff(lon+label_length,ymax)<=0.0) && (LonDiff(lon-label_length,ymin)>=0.0)) { /* Default: Centered Text */ @@ -638,7 +874,7 @@ void PlaceMarker(struct site location) if (ok2print==0) { - if ((lon-label_length)>=ymin) + if (LonDiff(lon-label_length,ymin)>=0.0) { /* Position Text To The Right Of The Marker */ @@ -703,7 +939,7 @@ void PlaceMarker(struct site location) coordinates that describe the placement of the text on the map. */ - if (ok2print && textx!=0.0 && texty!=0.0) + if (ok2print) { /* Draw Text */ @@ -720,6 +956,7 @@ void PlaceMarker(struct site location) if (byte&c) OrMask(x,y,2); } + x-=p1; y=texty; } @@ -728,7 +965,7 @@ void PlaceMarker(struct site location) On Location Specified */ for (x=lat-p3; (x<=xmax && x>=xmin && x<=lat+p3); x+=p1) - for (y=lon-p3; (y<=ymax && y>=ymin && y<=lon+p3); y+=p1) + for (y=lon-p3; (LonDiff(y,ymax)<=0.0) && (LonDiff(y,ymin)>=0.0) && (LonDiff(y,lon+p3)<=0.0); y+=p1) OrMask(x,y,2); } } @@ -746,10 +983,9 @@ double ReadBearing(char *input) embedded within the numbers expressed in the input string. Decimal seconds are permitted. */ - double bearing=0.0; - char string[20]; - int a, b, length, degrees, minutes; - double seconds; + double seconds, bearing=0.0; + char string[20]; + int a, b, length, degrees, minutes; /* Copy "input" to "string", and ignore any extra spaces that might be present in the process. */ @@ -759,7 +995,7 @@ double ReadBearing(char *input) for (a=0, b=0; a360.0 || bearing<0.0) + if (bearing>360.0 || bearing<-360.0) bearing=0.0; return bearing; @@ -803,10 +1043,10 @@ struct site LoadQTH(char *filename) or 'm', or by the word "meters" or "Meters", in which case meters is assumed, and is handled accordingly. */ - int x; - char string[50], qthfile[255]; - struct site tempsite; - FILE *fd=NULL; + int x; + char string[50], qthfile[255]; + struct site tempsite; + FILE *fd=NULL; for (x=0; filename[x]!='.' && filename[x]!=0 && x<250; x++) qthfile[x]=filename[x]; @@ -817,10 +1057,11 @@ struct site LoadQTH(char *filename) qthfile[x+3]='h'; qthfile[x+4]=0; - tempsite.lat=0.0; - tempsite.lon=0.0; + tempsite.lat=91.0; + tempsite.lon=361.0; tempsite.alt=0.0; tempsite.name[0]=0; + tempsite.filename[0]=0; fd=fopen(qthfile,"r"); @@ -843,6 +1084,9 @@ struct site LoadQTH(char *filename) fgets(string,49,fd); tempsite.lon=ReadBearing(string); + if (tempsite.lon<0.0) + tempsite.lon+=360.0; + /* Antenna Height */ fgets(string,49,fd); fclose(fd); @@ -859,169 +1103,569 @@ struct site LoadQTH(char *filename) must be converted to feet before exiting. */ for (x=0; string[x]!='M' && string[x]!='m' && string[x]!=0 && x<48; x++); + if (string[x]=='M' || string[x]=='m') { string[x]=0; - sscanf(string,"%lf",&tempsite.alt); + sscanf(string,"%f",&tempsite.alt); tempsite.alt*=3.28084; } else { string[x]=0; - sscanf(string,"%lf",&tempsite.alt); + sscanf(string,"%f",&tempsite.alt); } + + for (x=0; x<254 && qthfile[x]!=0; x++) + tempsite.filename[x]=qthfile[x]; + + tempsite.filename[x]=0; } return tempsite; } -int LoadSDF_SDF(char *name) +void LoadPAT(char *filename) { - /* This function reads uncompressed SPLAT Data Files (.sdf) - containing digital elevation model data into memory. - Elevation data, maximum and minimum elevations, and - quadrangle limits are stored in the first available - dem[] structure. */ + /* This function reads and processes antenna pattern (.az + and .el) files that correspond in name to previously + loaded SPLAT! .lrp files. */ + + int a, b, w, x, y, z, last_index, next_index, span; + char string[255], azfile[255], elfile[255], *pointer=NULL; + float az, xx, elevation, amplitude, rotation, valid1, valid2, + delta, azimuth[361], azimuth_pattern[361], el_pattern[10001], + elevation_pattern[361][1001], slant_angle[361], tilt, + mechanical_tilt=0.0, tilt_azimuth, tilt_increment, sum; + FILE *fd=NULL; + unsigned char read_count[10001]; - int x, y, data, indx, minlat, minlon, maxlat, maxlon; - char found, free_slot=0, line[20], sdf_file[255], path_plus_name[255]; - FILE *fd; + for (x=0; filename[x]!='.' && filename[x]!=0 && x<250; x++) + { + azfile[x]=filename[x]; + elfile[x]=filename[x]; + } - for (x=0; name[x]!='.' && name[x]!=0 && x<250; x++) - sdf_file[x]=name[x]; + azfile[x]='.'; + azfile[x+1]='a'; + azfile[x+2]='z'; + azfile[x+3]=0; - sdf_file[x]=0; + elfile[x]='.'; + elfile[x+1]='e'; + elfile[x+2]='l'; + elfile[x+3]=0; - /* Parse filename for minimum latitude and longitude values */ + rotation=0.0; - sscanf(sdf_file,"%d:%d:%d:%d",&minlat,&maxlat,&minlon,&maxlon); + got_azimuth_pattern=0; + got_elevation_pattern=0; - sdf_file[x]='.'; - sdf_file[x+1]='s'; - sdf_file[x+2]='d'; - sdf_file[x+3]='f'; - sdf_file[x+4]=0; + /* Load .az antenna pattern file */ - /* Is it already in memory? */ + fd=fopen(azfile,"r"); - for (indx=0, found=0; indx=0 && indx=0 && x<=360 && fd!=NULL) + { + azimuth[x]+=amplitude; + read_count[x]++; + } - fgets(line,19,fd); - sscanf(line,"%d",&dem[indx].min_north); + fgets(string,254,fd); + pointer=strchr(string,';'); - fgets(line,19,fd); - sscanf(line,"%d",&dem[indx].min_west); + if (pointer!=NULL) + *pointer=0; - fgets(line,19,fd); - sscanf(line,"%d",&dem[indx].max_north); + sscanf(string,"%f %f",&az, &litude); - for (x=0; x<1200; x++) - for (y=0; y<1200; y++) - { - fgets(line,19,fd); - sscanf(line,"%d",&data); - dem[indx].data[x][y]=data; + } while (feof(fd)==0); - if (data>dem[indx].max_el) - dem[indx].max_el=data; + fclose(fd); - if (dem[indx].min_el==0) - dem[indx].min_el=data; - else - { - if (datamax_elevation) - max_elevation=dem[indx].max_el; + /* Average pattern values in case more than + one was read for each degree of azimuth. */ - if (dem[indx].max_north>max_north) - max_north=dem[indx].max_north; + for (x=0; x<=360; x++) + { + if (read_count[x]>1) + azimuth[x]/=(float)read_count[x]; + } - if (dem[indx].max_west>max_west) - max_west=dem[indx].max_west; + /* Interpolate missing azimuths + to completely fill the array */ - if (min_north==0) - min_north=dem[indx].min_north; - else + last_index=-1; + next_index=-1; + + for (x=0; x<=360; x++) + { + if (read_count[x]!=0) { - if (dem[indx].min_north=360) + y-=360; + + azimuth_pattern[y]=azimuth[x]; } - else - return -1; + azimuth_pattern[360]=azimuth_pattern[0]; + + got_azimuth_pattern=255; } - else - return 0; -} + /* Read and process .el file */ -char *BZfgets(BZFILE *bzfd, unsigned length) -{ - /* This function returns at most one less than 'length' number - of characters from a bz2 compressed file whose file descriptor - is pointed to by *bzfd. In operation, a buffer is filled with + fd=fopen(elfile,"r"); + + if (fd!=NULL) + { + for (x=0; x<=10000; x++) + { + el_pattern[x]=0.0; + read_count[x]=0; + } + + /* Read mechanical tilt (degrees) and + tilt azimuth in degrees measured + clockwise from true North. */ + + fgets(string,254,fd); + pointer=strchr(string,';'); + + if (pointer!=NULL) + *pointer=0; + + sscanf(string,"%f %f",&mechanical_tilt, &tilt_azimuth); + + /* Read elevation (degrees) and corresponding + normalized field radiation pattern amplitude + (0.0 to 1.0) until EOF is reached. */ + + fgets(string,254,fd); + pointer=strchr(string,';'); + + if (pointer!=NULL) + *pointer=0; + + sscanf(string,"%f %f", &elevation, &litude); + + while (feof(fd)==0) + { + /* Read in normalized radiated field values + for every 0.01 degrees of elevation between + -10.0 and +90.0 degrees */ + + x=(int)rintf(100.0*(elevation+10.0)); + + if (x>=0 && x<=10000) + { + el_pattern[x]+=amplitude; + read_count[x]++; + } + + fgets(string,254,fd); + pointer=strchr(string,';'); + + if (pointer!=NULL) + *pointer=0; + + sscanf(string,"%f %f", &elevation, &litude); + } + + fclose(fd); + + /* Average the field values in case more than + one was read for each 0.01 degrees of elevation. */ + + for (x=0; x<=10000; x++) + { + if (read_count[x]>1) + el_pattern[x]/=(float)read_count[x]; + } + + /* Interpolate between missing elevations (if + any) to completely fill the array and provide + radiated field values for every 0.01 degrees of + elevation. */ + + last_index=-1; + next_index=-1; + + for (x=0; x<=10000; x++) + { + if (read_count[x]!=0) + { + if (last_index==-1) + last_index=x; + else + next_index=x; + } + + if (last_index!=-1 && next_index!=-1) + { + valid1=el_pattern[last_index]; + valid2=el_pattern[next_index]; + + span=next_index-last_index; + delta=(valid2-valid1)/(float)span; + + for (y=last_index+1; y=360) + y-=360; + + while (y<0) + y+=360; + + if (x<=180) + slant_angle[y]=-(tilt_increment*(90.0-xx)); + + if (x>180) + slant_angle[y]=-(tilt_increment*(xx-270.0)); + } + } + + slant_angle[360]=slant_angle[0]; /* 360 degree wrap-around */ + + for (w=0; w<=360; w++) + { + tilt=slant_angle[w]; + + /** Convert tilt angle to + an array index offset **/ + + y=(int)rintf(100.0*tilt); + + /* Copy shifted el_pattern[10001] field + values into elevation_pattern[361][1001] + at the corresponding azimuth, downsampling + (averaging) along the way in chunks of 10. */ + + for (x=y, z=0; z<=1000; x+=10, z++) + { + for (sum=0.0, a=0; a<10; a++) + { + b=a+x; + + if (b>=0 && b<=10000) + sum+=el_pattern[b]; + if (b<0) + sum+=el_pattern[0]; + if (b>10000) + sum+=el_pattern[10000]; + } + + elevation_pattern[w][z]=sum/10.0; + } + } + + got_elevation_pattern=255; + } + + for (x=0; x<=360; x++) + { + for (y=0; y<=1000; y++) + { + if (got_elevation_pattern) + elevation=elevation_pattern[x][y]; + else + elevation=1.0; + + if (got_azimuth_pattern) + az=azimuth_pattern[x]; + else + az=1.0; + + LR.antenna_pattern[x][y]=az*elevation; + } + } +} + +int LoadSDF_SDF(char *name) +{ + /* This function reads uncompressed SPLAT Data Files (.sdf) + containing digital elevation model data into memory. + Elevation data, maximum and minimum elevations, and + quadrangle limits are stored in the first available + dem[] structure. */ + + int x, y, data, indx, minlat, minlon, maxlat, maxlon; + char found, free_page=0, line[20], sdf_file[255], + path_plus_name[255]; + FILE *fd; + + for (x=0; name[x]!='.' && name[x]!=0 && x<250; x++) + sdf_file[x]=name[x]; + + sdf_file[x]=0; + + /* Parse filename for minimum latitude and longitude values */ + + sscanf(sdf_file,"%d:%d:%d:%d",&minlat,&maxlat,&minlon,&maxlon); + + sdf_file[x]='.'; + sdf_file[x+1]='s'; + sdf_file[x+2]='d'; + sdf_file[x+3]='f'; + sdf_file[x+4]=0; + + /* Is it already in memory? */ + + for (indx=0, found=0; indx=0 && indxdem[indx].max_el) + dem[indx].max_el=data; + + if (datamax_elevation) + max_elevation=dem[indx].max_el; + + if (max_north==-90) + max_north=dem[indx].max_north; + + else if (dem[indx].max_north>max_north) + max_north=dem[indx].max_north; + + if (min_north==90) + min_north=dem[indx].min_north; + + else if (dem[indx].min_northmax_west) + max_west=dem[indx].max_west; + } + + else + { + if (dem[indx].max_westmin_west) + min_west=dem[indx].min_west; + } + } + + fprintf(stdout," Done!\n"); + fflush(stdout); + return 1; + } + + else + return -1; + } + + else + return 0; +} + +char *BZfgets(BZFILE *bzfd, unsigned length) +{ + /* This function returns at most one less than 'length' number + of characters from a bz2 compressed file whose file descriptor + is pointed to by *bzfd. In operation, a buffer is filled with uncompressed data (size = BZBUFFER), which is then parsed and doled out as NULL terminated character strings every time this function is invoked. A NULL string indicates an EOF @@ -1083,10 +1727,10 @@ int LoadSDF_BZ(char *name) maximum and minimum elevations, and quadrangle limits are stored in the first available dem[] structure. */ - int x, y, data, indx, minlat, minlon, maxlat, maxlon; - char found, free_slot=0, sdf_file[255], path_plus_name[255]; - FILE *fd; - BZFILE *bzfd; + int x, y, data, indx, minlat, minlon, maxlat, maxlon; + char found, free_page=0, sdf_file[255], path_plus_name[255], *string; + FILE *fd; + BZFILE *bzfd; for (x=0; name[x]!='.' && name[x]!=0 && x<247; x++) sdf_file[x]=name[x]; @@ -1109,37 +1753,47 @@ int LoadSDF_BZ(char *name) /* Is it already in memory? */ - for (indx=0, found=0; indx=0 && indx=0 && indxdem[indx].max_el) dem[indx].max_el=data; - if (dem[indx].min_el==0) + if (datamax_elevation) max_elevation=dem[indx].max_el; - if (dem[indx].max_north>max_north) + if (max_north==-90) max_north=dem[indx].max_north; - if (dem[indx].max_west>max_west) - max_west=dem[indx].max_west; + else if (dem[indx].max_north>max_north) + max_north=dem[indx].max_north; + + if (min_north==90) + min_north=dem[indx].min_north; - if (min_north==0) + else if (dem[indx].min_northmax_west) + max_west=dem[indx].max_west; + } + + else + { + if (dem[indx].max_westmin_west) + min_west=dem[indx].min_west; + } + } + fprintf(stdout," Done!\n"); fflush(stdout); return 1; } + else return -1; } + else return 0; } @@ -1225,9 +1900,9 @@ char LoadSDF(char *name) exists for the region requested, and that the region requested must be entirely over water. */ - int x, y, indx, minlat, minlon, maxlat, maxlon; - char found, free_slot=0; - int return_value=-1; + int x, y, indx, minlat, minlon, maxlat, maxlon; + char found, free_page=0; + int return_value=-1; /* Try to load an uncompressed SDF first. */ @@ -1248,29 +1923,26 @@ char LoadSDF(char *name) /* Is it already in memory? */ - for (indx=0, found=0; indx=0 && indx=0 && indx0) dem[indx].min_el=0; @@ -1293,26 +1969,52 @@ char LoadSDF(char *name) if (dem[indx].max_el>max_elevation) max_elevation=dem[indx].max_el; - if (dem[indx].max_north>max_north) + if (max_north==-90) max_north=dem[indx].max_north; - if (dem[indx].max_west>max_west) - max_west=dem[indx].max_west; + else if (dem[indx].max_north>max_north) + max_north=dem[indx].max_north; + + if (min_north==90) + min_north=dem[indx].min_north; - if (min_north==0) + else if (dem[indx].min_northmax_west) + max_west=dem[indx].max_west; + } + + else + { + if (dem[indx].max_westmin_west) + min_west=dem[indx].min_west; + } } fprintf(stdout," Done!\n"); @@ -1331,10 +2033,10 @@ void LoadCities(char *filename) the locations and names of the cities and site locations read on topographic maps generated by SPLAT! */ - int x, y, z; - char input[80], str[3][80]; - struct site city_site; - FILE *fd=NULL; + int x, y, z; + char input[80], str[3][80]; + struct site city_site; + FILE *fd=NULL; fd=fopen(filename,"r"); @@ -1342,7 +2044,7 @@ void LoadCities(char *filename) { fgets(input,78,fd); - fprintf(stdout,"Reading \"%s\"... ",filename); + fprintf(stdout,"\nReading \"%s\"... ",filename); fflush(stdout); while (fd!=NULL && feof(fd)==0) @@ -1370,19 +2072,165 @@ void LoadCities(char *filename) city_site.lon=ReadBearing(str[2]); city_site.alt=0.0; + if (city_site.lon<0.0) + city_site.lon+=360.0; + PlaceMarker(city_site); fgets(input,78,fd); } fclose(fd); - fprintf(stdout,"Done!\n"); + fprintf(stdout,"Done!"); fflush(stdout); } + else fprintf(stderr,"*** ERROR: \"%s\": not found!\n",filename); } +void LoadUDT(char *filename) +{ + /* This function reads a file containing User-Defined Terrain + features for their addition to the digital elevation model + data used by SPLAT!. Elevations in the UDT file are evaluated + and then copied into a temporary file under /tmp. Then the + contents of the temp file are scanned, and if found to be unique, + are added to the ground elevations described by the digital + elevation data already loaded into memory. */ + + int i, x, y, z, fd=0; + char input[80], str[3][80], tempname[15], *pointer=NULL; + double latitude, longitude, height, templat, templon, + tempheight, one_pixel; + FILE *fd1=NULL, *fd2=NULL; + + strcpy(tempname,"/tmp/XXXXXX\0"); + one_pixel=1.0/1200.0; + + fd1=fopen(filename,"r"); + + if (fd1!=NULL) + { + fd=mkstemp(tempname); + fd2=fopen(tempname,"w"); + + fgets(input,78,fd1); + + pointer=strchr(input,';'); + + if (pointer!=NULL) + *pointer=0; + + fprintf(stdout,"\nReading \"%s\"... ",filename); + fflush(stdout); + + while (feof(fd1)==0) + { + /* Parse line for latitude, longitude, height */ + + for (x=0, y=0, z=0; x<78 && input[x]!=0 && z<3; x++) + { + if (input[x]!=',' && y<78) + { + str[z][y]=input[x]; + y++; + } + + else + { + str[z][y]=0; + z++; + y=0; + } + } + + latitude=ReadBearing(str[0]); + longitude=ReadBearing(str[1]); + + if (longitude<0.0) + longitude+=360.0; + + /* Remove and/or from antenna height string */ + + for (i=0; str[2][i]!=13 && str[2][i]!=10 && str[2][i]!=0; i++); + + str[2][i]=0; + + /* The terrain feature may be expressed in either + feet or meters. If the letter 'M' or 'm' is + discovered in the string, then this is an + indication that the value given is expressed + in meters. Otherwise the height is interpreted + as being expressed in feet. */ + + for (i=0; str[2][i]!='M' && str[2][i]!='m' && str[2][i]!=0 && i<48; i++); + + if (str[2][i]=='M' || str[2][i]=='m') + { + str[2][i]=0; + height=rint(atof(str[2])); + } + + else + { + str[2][i]=0; + height=rint(3.28084*atof(str[2])); + } + + if (height>0.0) + fprintf(fd2,"%f, %f, %f\n",latitude, longitude, height); + + fgets(input,78,fd1); + + pointer=strchr(input,';'); + + if (pointer!=NULL) + *pointer=0; + } + + fclose(fd1); + fclose(fd2); + close(fd); + + fprintf(stdout,"Done!"); + fflush(stdout); + + fd1=fopen(tempname,"r"); + fd2=fopen(tempname,"r"); + + fscanf(fd1,"%lf, %lf, %lf", &latitude, &longitude, &height); + + for (y=0; feof(fd1)==0; y++) + { + rewind(fd2); + + fscanf(fd2,"%lf, %lf, %lf", &templat, &templon, &tempheight); + + for (x=0, z=0; feof(fd2)==0; x++) + { + if (x>y) + if (fabs(latitude-templat)<=one_pixel && fabs(longitude-templon)<=one_pixel) + z=1; + + fscanf(fd2,"%lf, %lf, %lf", &templat, &templon, &tempheight); + } + + if (z==0) + AddElevation(latitude, longitude, height); + + fscanf(fd1,"%lf, %lf, %lf", &latitude, &longitude, &height); + } + + fclose(fd1); + fclose(fd2); + unlink(tempname); + } + + else + fprintf(stderr,"\n*** ERROR: \"%s\": not found!",filename); +} + void LoadBoundaries(char *filename) { /* This function reads Cartographic Boundary Files available from @@ -1391,11 +2239,11 @@ void LoadBoundaries(char *filename) the coordinates that describe the boundaries of cities, counties, and states. */ - int x; - double lat0, lon0, lat1, lon1; - char string[80]; - struct site source, destination; - FILE *fd=NULL; + int x; + double lat0, lon0, lat1, lon1; + char string[80]; + struct site source, destination; + FILE *fd=NULL; fd=fopen(filename,"r"); @@ -1403,7 +2251,7 @@ void LoadBoundaries(char *filename) { fgets(string,78,fd); - fprintf(stdout,"Reading \"%s\"... ",filename); + fprintf(stdout,"\nReading \"%s\"... ",filename); fflush(stdout); do @@ -1415,7 +2263,7 @@ void LoadBoundaries(char *filename) do { sscanf(string,"%lf %lf", &lon1, &lat1); - + lon0=fabs(lon0); lon1=fabs(lon1); @@ -1442,44 +2290,46 @@ void LoadBoundaries(char *filename) fclose(fd); - fprintf(stdout,"Done!\n"); + fprintf(stdout,"Done!"); fflush(stdout); } + else - fprintf(stderr,"*** ERROR: \"%s\": not found!\n",filename); + fprintf(stderr,"\n*** ERROR: \"%s\": not found!",filename); } -void ReadLRParm(char *txsite_filename) +char ReadLRParm(struct site txsite, char forced_read) { /* This function reads Longley-Rice parameter data for the transmitter site. The file name is the same as the txsite, except the filename extension is .lrp. If the needed file is not found, then the file "splat.lrp" is read from the - current working directory. Failure to load this file will - result in the default parameters hard coded into this - being used and written to "splat.lrp". */ - - double din; - char filename[255], lookup[256], string[80]; - int iin, ok=0, x; - FILE *fd=NULL, *outfile=NULL; - - /* Default parameters in case things go bad */ - - LR.eps_dielect=15.0; - LR.sgm_conductivity=0.005; - LR.eno_ns_surfref=301.0; - LR.frq_mhz=300.0; - LR.radio_climate=5; + current working directory. Failure to load this file under + a forced_read condition will result in the default parameters + hard coded into this function to be used and written to + "splat.lrp". */ + + double din; + char filename[255], string[80], *pointer=NULL, return_value=0; + int iin, ok=0, x; + FILE *fd=NULL, *outfile=NULL; + + /* Default parameters */ + + LR.eps_dielect=0.0; + LR.sgm_conductivity=0.0; + LR.eno_ns_surfref=0.0; + LR.frq_mhz=0.0; + LR.radio_climate=0; LR.pol=0; - LR.conf=0.50; - LR.rel=0.50; + LR.conf=0.0; + LR.rel=0.0; + LR.erp=0.0; - /* Modify txsite filename to one with a .lrp extension. */ + /* Generate .lrp filename from txsite filename. */ - strncpy(filename,txsite_filename,255); - - for (x=0; filename[x]!='.' && filename[x]!=0 && filename[x]!='\n' && x<249; x++); + for (x=0; txsite.filename[x]!='.' && txsite.filename[x]!=0 && x<250; x++) + filename[x]=txsite.filename[x]; filename[x]='.'; filename[x+1]='l'; @@ -1487,20 +2337,6 @@ void ReadLRParm(char *txsite_filename) filename[x+3]='p'; filename[x+4]=0; - /* Small lookup table to parse file, pass - numeric data, and ignore comments. */ - - for (x=0; x<=255; x++) - lookup[x]=0; - - /* Valid characters */ - - for (x=48; x<=57; x++) - lookup[x]=x; - - lookup[32]=32; - lookup[46]='.'; - fd=fopen(filename,"r"); if (fd==NULL) @@ -1515,10 +2351,10 @@ void ReadLRParm(char *txsite_filename) { fgets(string,80,fd); - for (x=0; lookup[(int)string[x]] && x<20; x++) - string[x]=lookup[(int)string[x]]; + pointer=strchr(string,';'); - string[x]=0; + if (pointer!=NULL) + *pointer=0; ok=sscanf(string,"%lf", &din); @@ -1528,10 +2364,10 @@ void ReadLRParm(char *txsite_filename) fgets(string,80,fd); - for (x=0; lookup[(int)string[x]] && x<20; x++) - string[x]=lookup[(int)string[x]]; + pointer=strchr(string,';'); - string[x]=0; + if (pointer!=NULL) + *pointer=0; ok=sscanf(string,"%lf", &din); } @@ -1542,10 +2378,10 @@ void ReadLRParm(char *txsite_filename) fgets(string,80,fd); - for (x=0; lookup[(int)string[x]] && x<20; x++) - string[x]=lookup[(int)string[x]]; + pointer=strchr(string,';'); - string[x]=0; + if (pointer!=NULL) + *pointer=0; ok=sscanf(string,"%lf", &din); } @@ -1556,10 +2392,10 @@ void ReadLRParm(char *txsite_filename) fgets(string,80,fd); - for (x=0; lookup[(int)string[x]] && x<20; x++) - string[x]=lookup[(int)string[x]]; + pointer=strchr(string,';'); - string[x]=0; + if (pointer!=NULL) + *pointer=0; ok=sscanf(string,"%lf", &din); } @@ -1570,10 +2406,10 @@ void ReadLRParm(char *txsite_filename) fgets(string,80,fd); - for (x=0; lookup[(int)string[x]] && x<20; x++) - string[x]=lookup[(int)string[x]]; + pointer=strchr(string,';'); - string[x]=0; + if (pointer!=NULL) + *pointer=0; ok=sscanf(string,"%d", &iin); } @@ -1584,10 +2420,10 @@ void ReadLRParm(char *txsite_filename) fgets(string,80,fd); - for (x=0; lookup[(int)string[x]] && x<20; x++) - string[x]=lookup[(int)string[x]]; + pointer=strchr(string,';'); - string[x]=0; + if (pointer!=NULL) + *pointer=0; ok=sscanf(string,"%d", &iin); } @@ -1598,10 +2434,10 @@ void ReadLRParm(char *txsite_filename) fgets(string,80,fd); - for (x=0; lookup[(int)string[x]] && x<20; x++) - string[x]=lookup[(int)string[x]]; + pointer=strchr(string,';'); - string[x]=0; + if (pointer!=NULL) + *pointer=0; ok=sscanf(string,"%lf", &din); } @@ -1612,144 +2448,99 @@ void ReadLRParm(char *txsite_filename) fgets(string,80,fd); - for (x=0; lookup[(int)string[x]] && x<20; x++) - string[x]=lookup[(int)string[x]]; + pointer=strchr(string,';'); - string[x]=0; + if (pointer!=NULL) + *pointer=0; ok=sscanf(string,"%lf", &din); } if (ok) + { LR.rel=din; + din=0.0; + return_value=1; + + if (fgets(string,80,fd)!=NULL) + { + pointer=strchr(string,':'); + + if (pointer!=NULL) + *pointer=0; + + if (sscanf(string,"%lf", &din)) + LR.erp=din; + } + } fclose(fd); + + if (forced_erp!=-1.0) + LR.erp=forced_erp; + + if (ok) + LoadPAT(filename); } - if (fd==NULL) + if (fd==NULL && forced_read) { - /* Create a "splat.lrp" file since one - could not be successfully loaded. */ + /* Assign some default parameters + for use in this run. */ + + LR.eps_dielect=15.0; + LR.sgm_conductivity=0.005; + LR.eno_ns_surfref=301.0; + LR.frq_mhz=300.0; + LR.radio_climate=5; + LR.pol=0; + LR.conf=0.50; + LR.rel=0.50; + LR.erp=0.0; + + /* Write them to a "splat.lrp" file. */ outfile=fopen("splat.lrp","w"); fprintf(outfile,"%.3f\t; Earth Dielectric Constant (Relative permittivity)\n",LR.eps_dielect); - fprintf(outfile,"%.3f\t; Earth Conductivity (Siemens per meter)\n", LR.sgm_conductivity); - fprintf(outfile,"%.3f\t; Atmospheric Bending Constant (N-Units)\n",LR.eno_ns_surfref); - fprintf(outfile,"%.3f\t; Frequency in MHz (20 MHz to 20 GHz)\n", LR.frq_mhz); - fprintf(outfile,"%d\t; Radio Climate\n",LR.radio_climate); - fprintf(outfile,"%d\t; Polarization (0 = Horizontal, 1 = Vertical)\n", LR.pol); - fprintf(outfile,"%.2f\t; Fraction of situations\n",LR.conf); - - fprintf(outfile, "%.2f\t; Fraction of time\n",LR.rel); - + fprintf(outfile,"%.2f\t; Fraction of time\n",LR.rel); + fprintf(outfile,"%.2f\t; Transmitter Effective Radiated Power in Watts (optional)\n",LR.erp); fprintf(outfile,"\nPlease consult SPLAT! documentation for the meaning and use of this data.\n"); fclose(outfile); - fprintf(stderr,"\n%c*** There were problems reading your \"%s\" file! ***\nA \"splat.lrp\" file was written to your directory with default data.\n",7,filename); - } - - if (fd==NULL || ok==0) - fprintf(stderr,"Longley-Rice default parameters have been assumed for this analysis.\n"); -} - -struct site los(struct site source, struct site destination) -{ - /* This function determines whether a line-of-sight path - unobstructed by terrain exists between source (transmitter) - and destination (receiver) based on the geographical - locations of the two sites, their respective antenna - heights above ground, and the terrain between them. - A site structure is returned upon completion. If the - first character of site.name is ' ', then a clear path - exists between source and destination. If the first - character is '*', then an obstruction exists, and the - site.lat and site.lon elements of the structure provide - the geographical location of the obstruction. */ - - int x; - char block; - struct site test, blockage; - register double distance, tx_alt, rx_alt, - cos_xmtr_angle, cos_test_angle, test_alt; - - ReadPath(source,destination); - - distance=5280.0*Distance(source,destination); - tx_alt=earthradius+source.alt+GetElevation(source); - rx_alt=earthradius+destination.alt+GetElevation(destination); - - /* Elevation angle of the xmtr (source) as seen by the rcvr */ - - cos_xmtr_angle=((rx_alt*rx_alt)+(distance*distance)-(tx_alt*tx_alt))/(2.0*rx_alt*distance); + return_value=1; - /* Determine the elevation angle of each discrete location - along the path between the receiver and transmitter. + fprintf(stderr,"\n\n%c*** There were problems reading your \"%s\" file! ***\nA \"splat.lrp\" file was written to your directory with default data.\n",7,filename); + } - Since obstructions are more likely due to terrain effects - closest to the receiver rather than farther away, we start - looking for potential obstructions from the receiver's - location, and work our way towards the transmitter. - This loop is broken when the first obstruction is - detected. If we can travel all the way to the transmitter - without detecting an obstruction, then we have a clear - unobstructed path between transmitter and receiver. */ + else if (forced_read==0) + return_value=0; - for (x=path.length-1, block=0; x>0 && block==0; x--) + if (forced_read && (fd==NULL || ok==0)) { - /* Build a structure for each test - point along the path to be surveyed. */ - - test.lat=path.lat[x]; - test.lon=path.lon[x]; - - /* Measure the distance between the - test point and the receiver locations */ - - distance=5280.0*Distance(test,destination); - test_alt=earthradius+path.elevation[x]; - - /* Determine the cosine of the elevation of the test - point as seen from the location of the receiver */ + LR.eps_dielect=15.0; + LR.sgm_conductivity=0.005; + LR.eno_ns_surfref=301.0; + LR.frq_mhz=300.0; + LR.radio_climate=5; + LR.pol=0; + LR.conf=0.50; + LR.rel=0.50; + LR.erp=0.0; - cos_test_angle=((rx_alt*rx_alt)+(distance*distance)-(test_alt*test_alt))/(2.0*rx_alt*distance); - - /* If the elevation angle to the test point (as seen from - the receiver) is greater than the elevation angle to the - transmitter (as seen by the receiver), then we have a - path obstructed by terrain. Note: Since we're comparing - the cosines of these angles rather than the angles - themselves (eliminating the call to acos() saves - considerable time), the following "if" statement is - reversed from what it would normally be if the angles - were compared. */ - - if (cos_xmtr_angle>cos_test_angle) - { - block=1; - blockage.lat=path.lat[x]; - blockage.lon=path.lon[x]; - blockage.alt=path.elevation[x]; - blockage.name[0]='*'; - } - } + fprintf(stderr,"Longley-Rice default parameters have been assumed for this analysis.\n"); - if (block==0) - { - blockage.lat=0.0; - blockage.lon=0.0; - blockage.alt=0.0; - blockage.name[0]=' '; + return_value=1; } - return blockage; + return (return_value); } void PlotPath(struct site source, struct site destination, char mask_value) @@ -1794,7 +2585,7 @@ void PlotPath(struct site source, struct site destination, char mask_value) cos_test_angle=((rx_alt*rx_alt)+(distance*distance)-(test_alt*test_alt))/(2.0*rx_alt*distance); /* Compare these two angles to determine if - a blockage exists. Since we're comparing + an obstruction exists. Since we're comparing the cosines of these angles rather than the angles themselves, the following "if" statement is reversed from what it would @@ -1810,55 +2601,206 @@ void PlotPath(struct site source, struct site destination, char mask_value) } } -void PlotLRPath(struct site source, struct site destination) +void PlotLRPath(struct site source, struct site destination, unsigned char mask_value, FILE *fd) { - /* This function plots the RF signal path loss - between source and destination points based - on the Longley-Rice propagation model. */ - - char strmode[100]; - int x, y, errnum; - double loss; + /* This function plots the RF path loss between source and + destination points based on the Longley-Rice propagation + model, taking into account antenna pattern data, if available. */ + + int x, y, ifs, ofs, errnum; + char block=0, strmode[100]; + double loss, azimuth, pattern=0.0, + xmtr_alt, dest_alt, xmtr_alt2, dest_alt2, + cos_rcvr_angle, cos_test_angle=0.0, test_alt, + elevation=0.0, distance=0.0, four_thirds_earth, + field_strength=0.0; + struct site temp; ReadPath(source,destination); - elev_l[1]=0.04*METERS_PER_MILE; + + four_thirds_earth=EARTHRADIUS*(4.0/3.0); + + /* Copy elevations along path into the elev_l[] array. */ for (x=0; x1.0) + cos_rcvr_angle=1.0; + + if (cos_rcvr_angle<-1.0) + cos_rcvr_angle=-1.0; + + if (got_elevation_pattern || fd!=NULL) + { + /* Determine the elevation angle to the first obstruction + along the path IF elevation pattern data is available + or an output (.plo) file has been designated. */ + + for (x=2, block=0; (x1.0) + cos_test_angle=1.0; + + if (cos_test_angle<-1.0) + cos_test_angle=-1.0; + + /* Compare these two angles to determine if + an obstruction exists. Since we're comparing + the cosines of these angles rather than + the angles themselves, the sense of the + following "if" statement is reversed from + what it would be if the angles themselves + were compared. */ + + if (cos_rcvr_angle>cos_test_angle) + block=1; + } + + if (block) + elevation=((acos(cos_test_angle))/deg2rad)-90.0; + else + elevation=((acos(cos_rcvr_angle))/deg2rad)-90.0; + } + + /* Determine attenuation for each point along the + path using Longley-Rice's point_to_point mode + starting at y=2 (number_of_points = 1), the + shortest distance terrain can play a role in + path loss. */ + + elev_l[0]=y-1; /* (number of points - 1) */ + + /* Distance between elevation samples */ + elev_l[1]=METERS_PER_MILE*(path.distance[y]-path.distance[y-1]); point_to_point(elev_l,source.alt*METERS_PER_FOOT, - destination.alt*METERS_PER_FOOT, - LR.eps_dielect, LR.sgm_conductivity, LR.eno_ns_surfref, - LR.frq_mhz, LR.radio_climate, LR.pol, LR.conf, LR.rel, - loss, strmode, errnum); + destination.alt*METERS_PER_FOOT, LR.eps_dielect, + LR.sgm_conductivity, LR.eno_ns_surfref, LR.frq_mhz, + LR.radio_climate, LR.pol, LR.conf, LR.rel, loss, + strmode, errnum); + + temp.lat=path.lat[y]; + temp.lon=path.lon[y]; + + azimuth=(Azimuth(source,temp)); + + /* Write path loss data to output file */ - /* Note: PASS BY REFERENCE ... loss and errnum are pass - by reference, only used in this file by this function */ + if (fd!=NULL) + fprintf(fd,"%.7f, %.7f, %.3f, %.3f, %.2f",path.lat[y], path.lon[y], azimuth, elevation, loss); - if (loss>225.0) - loss=225.0; + /* Integrate the antenna's radiation + pattern into the overall path loss. */ - if (loss<75.0) - loss=75.0; + x=(int)rint(10.0*(10.0-elevation)); - loss-=75.0; - loss/=10.0; - loss+=1.0; + if (x>=0 && x<=1000) + { + azimuth=rint(azimuth); + + pattern=(double)LR.antenna_pattern[(int)azimuth][x]; + + if (pattern!=0.0) + { + pattern=20.0*log10(pattern); + loss-=pattern; + + if (fd!=NULL && (got_elevation_pattern || got_azimuth_pattern)) + fprintf(fd,", %.2f",loss); + } + } + + if (LR.erp!=0.0) + { + field_strength=(137.26+(20.0*log10(LR.frq_mhz))-loss)+(10.0*log10(LR.erp/1000.0)); + + ifs=100+(int)rint(field_strength); + + if (ifs<0) + ifs=0; + + if (ifs>255) + ifs=255; + + ofs=GetSignal(path.lat[y],path.lon[y]); + + if (ofs>ifs) + ifs=ofs; + + PutSignal(path.lat[y],path.lon[y],(unsigned char)ifs); - OrMask(path.lat[y],path.lon[y],((unsigned char)(loss))<<3); - } + if (fd!=NULL) + fprintf(fd,", %.3f",field_strength); + } + + else + { + if (loss>255) + ifs=255; + else + ifs=(int)rint(loss); + + ofs=GetSignal(path.lat[y],path.lon[y]); + + if (ofsmax_range) - OrMask(path.lat[y],path.lon[y],1); + PutMask(path.lat[y],path.lon[y],(GetMask(path.lat[y],path.lon[y])&7)+mask_value<<3); + } } } @@ -1873,17 +2815,12 @@ void PlotCoverage(struct site source, double altitude) of a topographic map when the WritePPM() function is later invoked. */ - double lat, lon, one_pixel; - static unsigned char mask_value; + float lat, lon, one_pixel; + static unsigned char mask_value=1; int z, count; struct site edge; unsigned char symbol[4], x; - /* Initialize mask_value */ - - if (mask_value!=8 && mask_value!=16 && mask_value!=32) - mask_value=1; - one_pixel=1.0/1200.0; symbol[0]='.'; @@ -1893,16 +2830,19 @@ void PlotCoverage(struct site source, double altitude) count=0; - fprintf(stdout,"\nComputing line-of-sight coverage of %s with an RX antenna\nat %.2f feet AGL:\n\n 0%c to 25%c ",source.name,altitude,37,37); + fprintf(stdout,"\n\nComputing line-of-sight coverage of \"%s\" with an RX antenna\nat %.2f %s AGL...\n\n 0%c to 25%c ",source.name,metric?altitude*METERS_PER_FOOT:altitude,metric?"meters":"feet",37,37); fflush(stdout); /* 18.75=1200 pixels/degree divided by 64 loops per progress indicator symbol (.oOo) printed. */ - z=(int)(18.75*(max_west-min_west)); + z=(int)(18.75*ReduceAngle(max_west-min_west)); - for (lon=min_west, x=0; lon<=max_west; lon+=one_pixel) + for (lon=min_west, x=0; (LonDiff(lon,max_west)<=0.0); lon+=one_pixel) { + if (lon>=360.0) + lon-=360.0; + edge.lat=max_north; edge.lon=lon; edge.alt=altitude; @@ -1955,10 +2895,13 @@ void PlotCoverage(struct site source, double altitude) fprintf(stdout,"\n50%c to 75%c ",37,37); fflush(stdout); - z=(int)(18.75*(max_west-min_west)); + z=(int)(18.75*ReduceAngle(max_west-min_west)); - for (lon=min_west, x=0; lon<=max_west; lon+=one_pixel) + for (lon=min_west, x=0; (LonDiff(lon,max_west)<=0.0); lon+=one_pixel) { + if (lon>=360.0) + lon-=360.0; + edge.lat=min_north; edge.lon=lon; edge.alt=altitude; @@ -2027,7 +2970,7 @@ void PlotCoverage(struct site source, double altitude) } } -void PlotLRMap(struct site source, double altitude) +void PlotLRMap(struct site source, double altitude, char *plo_filename) { /* This function performs a 360 degree sweep around the transmitter site (source location), and plots the @@ -2035,13 +2978,15 @@ void PlotLRMap(struct site source, double altitude) topographic map based on a receiver located at the specified altitude (in feet AGL). Results are stored in memory, and written out in the form - of a topographic map when the WritePPMLR() function - is later invoked. */ + of a topographic map when the WritePPMLR() or + WritePPMSS() functions are later invoked. */ int z, count; struct site edge; - double lat, lon, one_pixel; - unsigned char symbol[4], x; + float lat, lon, one_pixel; + unsigned char x, symbol[4]; + static unsigned char mask_value=1; + FILE *fd=NULL; one_pixel=1.0/1200.0; @@ -2052,22 +2997,36 @@ void PlotLRMap(struct site source, double altitude) count=0; - fprintf(stdout,"\nComputing Longley-Rice coverage of %s ", source.name); - fprintf(stdout,"out to a radius\nof %.2f miles with an RX antenna at %.2f feet AGL:\n\n 0%c to 25%c ",max_range,altitude,37,37); + fprintf(stdout,"\n\nComputing Longley-Rice contours of \"%s\" ", source.name); + + fprintf(stdout,"out to a radius\nof %.2f %s with an RX antenna at %.2f %s AGL...\n\n 0%c to 25%c ",metric?max_range*KM_PER_MILE:max_range,metric?"kilometers":"miles",metric?altitude*METERS_PER_FOOT:altitude,metric?"meters":"feet",37,37); fflush(stdout); + if (plo_filename[0]!=0) + fd=fopen(plo_filename,"wb"); + + if (fd!=NULL) + { + /* Write header information to output file */ + + fprintf(fd,"%d, %d\t; max_west, min_west\n%d, %d\t; max_north, min_north\n",max_west, min_west, max_north, min_north); + } + /* 18.75=1200 pixels/degree divided by 64 loops per progress indicator symbol (.oOo) printed. */ - z=(int)(18.75*(max_west-min_west)); + z=(int)(18.75*ReduceAngle(max_west-min_west)); - for (lon=min_west, x=0; lon<=max_west; lon+=one_pixel) + for (lon=min_west, x=0; (LonDiff(lon,max_west)<=0.0); lon+=one_pixel) { + if (lon>=360.0) + lon-=360.0; + edge.lat=max_north; edge.lon=lon; edge.alt=altitude; - PlotLRPath(source,edge); + PlotLRPath(source,edge,mask_value,fd); count++; if (count==z) @@ -2095,7 +3054,7 @@ void PlotLRMap(struct site source, double altitude) edge.lon=min_west; edge.alt=altitude; - PlotLRPath(source,edge); + PlotLRPath(source,edge,mask_value,fd); count++; if (count==z) @@ -2115,15 +3074,18 @@ void PlotLRMap(struct site source, double altitude) fprintf(stdout,"\n50%c to 75%c ",37,37); fflush(stdout); - z=(int)(18.75*(max_west-min_west)); + z=(int)(18.75*ReduceAngle(max_west-min_west)); - for (lon=min_west, x=0; lon<=max_west; lon+=one_pixel) + for (lon=min_west, x=0; (LonDiff(lon,max_west)<=0.0); lon+=one_pixel) { + if (lon>=360.0) + lon-=360.0; + edge.lat=min_north; edge.lon=lon; edge.alt=altitude; - PlotLRPath(source,edge); + PlotLRPath(source,edge,mask_value,fd); count++; if (count==z) @@ -2151,7 +3113,7 @@ void PlotLRMap(struct site source, double altitude) edge.lon=max_west; edge.alt=altitude; - PlotLRPath(source,edge); + PlotLRPath(source,edge,mask_value,fd); count++; if (count==z) @@ -2167,11 +3129,330 @@ void PlotLRMap(struct site source, double altitude) } } - fprintf(stdout,"\nDone!\n"); + if (fd!=NULL) + fclose(fd); + + fprintf(stdout,"\nDone!\n"); fflush(stdout); + + if (mask_value<30) + mask_value++; +} + +void LoadSignalColors(struct site xmtr) +{ + int x, y, ok, val[4]; + char filename[255], string[80], *pointer=NULL; + FILE *fd=NULL; + + for (x=0; xmtr.filename[x]!='.' && xmtr.filename[x]!=0 && x<250; x++) + filename[x]=xmtr.filename[x]; + + filename[x]='.'; + filename[x+1]='s'; + filename[x+2]='c'; + filename[x+3]='f'; + filename[x+4]=0; + + /* Default values */ + + region.level[0]=128; + region.color[0][0]=255; + region.color[0][1]=0; + region.color[0][2]=0; + + region.level[1]=118; + region.color[1][0]=255; + region.color[1][1]=165; + region.color[1][2]=0; + + region.level[2]=108; + region.color[2][0]=255; + region.color[2][1]=206; + region.color[2][2]=0; + + region.level[3]=98; + region.color[3][0]=255; + region.color[3][1]=255; + region.color[3][2]=0; + + region.level[4]=88; + region.color[4][0]=184; + region.color[4][1]=255; + region.color[4][2]=0; + + region.level[5]=78; + region.color[5][0]=0; + region.color[5][1]=255; + region.color[5][2]=0; + + region.level[6]=68; + region.color[6][0]=0; + region.color[6][1]=208; + region.color[6][2]=0; + + region.level[7]=58; + region.color[7][0]=0; + region.color[7][1]=196; + region.color[7][2]=196; + + region.level[8]=48; + region.color[8][0]=0; + region.color[8][1]=148; + region.color[8][2]=255; + + region.level[9]=38; + region.color[9][0]=80; + region.color[9][1]=80; + region.color[9][2]=255; + + region.level[10]=28; + region.color[10][0]=0; + region.color[10][1]=38; + region.color[10][2]=255; + + region.level[11]=18; + region.color[11][0]=142; + region.color[11][1]=63; + region.color[11][2]=255; + + region.level[12]=8; + region.color[12][0]=140; + region.color[12][1]=0; + region.color[12][2]=128; + + region.levels=13; + + fd=fopen("splat.scf","r"); + + if (fd==NULL) + fd=fopen(filename,"r"); + + if (fd==NULL) + { + fd=fopen(filename,"w"); + + fprintf(fd,"; SPLAT! Auto-generated Signal Color Definition (\"%s\") File\n",filename); + fprintf(fd,";\n; Format for the parameters held in this file is as follows:\n;\n"); + fprintf(fd,"; dBuV/m: red, green, blue\n;\n"); + fprintf(fd,"; ...where \"dBuV/m\" is the signal strength (in dBuV/m) and\n"); + fprintf(fd,"; \"red\", \"green\", and \"blue\" are the corresponding RGB color\n"); + fprintf(fd,"; definitions ranging from 0 to 255 for the region specified.\n"); + fprintf(fd,";\n; The following parameters may be edited and/or expanded\n"); + fprintf(fd,"; for future runs of SPLAT! A total of 32 contour regions\n"); + fprintf(fd,"; may be defined in this file.\n;\n;\n"); + + for (x=0; x255) + val[y]=255; + + if (val[y]<0) + val[y]=0; + } + + region.level[x]=val[0]; + region.color[x][0]=val[1]; + region.color[x][1]=val[2]; + region.color[x][2]=val[3]; + x++; + } + + fgets(string,80,fd); + } + + fclose(fd); + region.levels=x; + } +} + +void LoadLossColors(struct site xmtr) +{ + int x, y, ok, val[4]; + char filename[255], string[80], *pointer=NULL; + FILE *fd=NULL; + + for (x=0; xmtr.filename[x]!='.' && xmtr.filename[x]!=0 && x<250; x++) + filename[x]=xmtr.filename[x]; + + filename[x]='.'; + filename[x+1]='l'; + filename[x+2]='c'; + filename[x+3]='f'; + filename[x+4]=0; + + /* Default values */ + + region.level[0]=80; + region.color[0][0]=255; + region.color[0][1]=0; + region.color[0][2]=0; + + region.level[1]=90; + region.color[1][0]=255; + region.color[1][1]=128; + region.color[1][2]=0; + + region.level[2]=100; + region.color[2][0]=255; + region.color[2][1]=165; + region.color[2][2]=0; + + region.level[3]=110; + region.color[3][0]=255; + region.color[3][1]=206; + region.color[3][2]=0; + + region.level[4]=120; + region.color[4][0]=255; + region.color[4][1]=255; + region.color[4][2]=0; + + region.level[5]=130; + region.color[5][0]=184; + region.color[5][1]=255; + region.color[5][2]=0; + + region.level[6]=140; + region.color[6][0]=0; + region.color[6][1]=255; + region.color[6][2]=0; + + region.level[7]=150; + region.color[7][0]=0; + region.color[7][1]=208; + region.color[7][2]=0; + + region.level[8]=160; + region.color[8][0]=0; + region.color[8][1]=196; + region.color[8][2]=196; + + region.level[9]=170; + region.color[9][0]=0; + region.color[9][1]=148; + region.color[9][2]=255; + + region.level[10]=180; + region.color[10][0]=80; + region.color[10][1]=80; + region.color[10][2]=255; + + region.level[11]=190; + region.color[11][0]=0; + region.color[11][1]=38; + region.color[11][2]=255; + + region.level[12]=200; + region.color[12][0]=142; + region.color[12][1]=63; + region.color[12][2]=255; + + region.level[13]=210; + region.color[13][0]=196; + region.color[13][1]=54; + region.color[13][2]=255; + + region.level[14]=220; + region.color[14][0]=255; + region.color[14][1]=0; + region.color[14][2]=255; + + region.level[15]=230; + region.color[15][0]=255; + region.color[15][1]=194; + region.color[15][2]=204; + + region.levels=16; + + fd=fopen("splat.lcf","r"); + + if (fd==NULL) + fd=fopen(filename,"r"); + + if (fd==NULL) + { + fd=fopen(filename,"w"); + + fprintf(fd,"; SPLAT! Auto-generated Path-Loss Color Definition (\"%s\") File\n",filename); + fprintf(fd,";\n; Format for the parameters held in this file is as follows:\n;\n"); + fprintf(fd,"; dB: red, green, blue\n;\n"); + fprintf(fd,"; ...where \"dB\" is the path loss (in dB) and\n"); + fprintf(fd,"; \"red\", \"green\", and \"blue\" are the corresponding RGB color\n"); + fprintf(fd,"; definitions ranging from 0 to 255 for the region specified.\n"); + fprintf(fd,";\n; The following parameters may be edited and/or expanded\n"); + fprintf(fd,"; for future runs of SPLAT! A total of 32 contour regions\n"); + fprintf(fd,"; may be defined in this file.\n;\n;\n"); + + for (x=0; x255) + val[y]=255; + + if (val[y]<0) + val[y]=0; + } + + region.level[x]=val[0]; + region.color[x][0]=val[1]; + region.color[x][1]=val[2]; + region.color[x][2]=val[3]; + x++; + } + + fgets(string,80,fd); + } + + fclose(fd); + region.levels=x; + } } -void WritePPM(char *filename) +void WritePPM(char *filename, unsigned char geo, unsigned char kml, unsigned char ngs) { /* This function generates a topographic map in Portable Pix Map (PPM) format based on logarithmically scaled topology data, @@ -2180,57 +3461,113 @@ void WritePPM(char *filename) from its representation in dem[][] so that north points up and east points right in the image generated. */ - int indx, x, x0, y0, minlat, minlon; - unsigned width, height, output; + char mapfile[255], geofile[255], kmlfile[255]; unsigned char found, mask; - char mapfile[255]; - double conversion, lat, lon, one_over_gamma, one_pixel; + unsigned width, height, terrain; + int indx, x, y, x0=0, y0=0; + double lat, lon, one_pixel, conversion, one_over_gamma; /* USED to be float... */ FILE *fd; one_pixel=1.0/1200.0; one_over_gamma=1.0/GAMMA; conversion=255.0/pow((double)(max_elevation-min_elevation),one_over_gamma); - width=1200*(max_west-min_west); - height=1200*(max_north-min_north); + width=(unsigned)(1200*ReduceAngle(max_west-min_west)); + height=(unsigned)(1200*ReduceAngle(max_north-min_north)); if (filename[0]==0) - strncpy(mapfile, "map.ppm\0",8); - else + strncpy(filename, "map.ppm\0",8); + + for (x=0; filename[x]!='.' && filename[x]!=0 && x<250; x++) + { + mapfile[x]=filename[x]; + geofile[x]=filename[x]; + kmlfile[x]=filename[x]; + } + + mapfile[x]='.'; + geofile[x]='.'; + kmlfile[x]='.'; + mapfile[x+1]='p'; + geofile[x+1]='g'; + kmlfile[x+1]='k'; + mapfile[x+2]='p'; + geofile[x+2]='e'; + kmlfile[x+2]='m'; + mapfile[x+3]='m'; + geofile[x+3]='o'; + kmlfile[x+3]='l'; + mapfile[x+4]=0; + geofile[x+4]=0; + kmlfile[x+4]=0; + + if (kml==0 && geo) + { + fd=fopen(geofile,"wb"); + + fprintf(fd,"FILENAME\t%s\n",mapfile); + fprintf(fd,"#\t\tX\tY\tLong\t\tLat\n"); + fprintf(fd,"TIEPOINT\t0\t0\t%d.000\t\t%d.000\n",(max_west<180?-max_west:360-max_west),max_north); + fprintf(fd,"TIEPOINT\t%u\t%u\t%d.000\t\t%d.000\n",width-1,height-1,(min_west<180?-min_west:360-min_west),min_north); + fprintf(fd,"IMAGESIZE\t%u\t%u\n",width,height); + fprintf(fd,"#\n# Auto Generated by SPLAT! v%s\n#\n",splat_version); + + fclose(fd); + } + + if (kml && geo==0) { - for (x=0; filename[x]!='.' && filename[x]!=0 && x<250; x++) - mapfile[x]=filename[x]; + fd=fopen(kmlfile,"wb"); + + fprintf(fd,"\n"); + fprintf(fd,"\n"); + fprintf(fd," \n"); + fprintf(fd," SPLAT!\n"); + fprintf(fd," Line-of-Sight Overlay\n"); + fprintf(fd," \n"); + fprintf(fd," SPLAT! Line-of-Sight Overlay\n"); + fprintf(fd," SPLAT! Coverage\n"); + fprintf(fd," \n"); + fprintf(fd," %s\n",mapfile); + fprintf(fd," \n"); + fprintf(fd," 128\n"); + fprintf(fd," \n"); + fprintf(fd," %.5f\n",(double)max_north-one_pixel); + fprintf(fd," %.5f\n",(double)min_north); + fprintf(fd," %.5f\n",((double)min_west<180.0?(double)-min_west:360.0-(double)min_west)); + fprintf(fd," %.5f\n",(((double)max_west-one_pixel)<180.0?-((double)max_west-one_pixel):(360.0-(double)max_west-one_pixel))); + fprintf(fd," 0.0\n"); + fprintf(fd," \n"); + fprintf(fd," \n"); + fprintf(fd," \n"); + fprintf(fd,"\n"); - mapfile[x]='.'; - mapfile[x+1]='p'; - mapfile[x+2]='p'; - mapfile[x+3]='m'; - mapfile[x+4]=0; + fclose(fd); } fd=fopen(mapfile,"wb"); fprintf(fd,"P6\n%u %u\n255\n",width,height); - fprintf(stdout,"\nWriting \"%s\" (%ux%u pixmap image)... ",mapfile,width,height); fflush(stdout); - for (lat=(double)max_north; lat>=(double)min_north; lat-=one_pixel) + for (y=0, lat=(double)max_north-one_pixel; y<(int)height; y++, lat=(double)max_north-(one_pixel*(double)y)) { - for (lon=(double)max_west; lon>=(double)min_west; lon-=one_pixel) + for (x=0, lon=(double)max_west-one_pixel; x<(int)width; x++, lon=(double)max_west-(one_pixel*(double)x)) { - minlat=(int)floor(lat); - minlon=(int)floor(lon); + if (lon<0.0) + lon+=360.0; - for (indx=0, found=0; indx=(double)dem[indx].min_north && lat<(double)dem[indx].max_north && LonDiff(lon,(double)dem[indx].min_west)>=0.0 && LonDiff(lon,(double)dem[indx].max_west)<0.0) found=1; else indx++; + if (found) { - x0=(int)((1199.0*(lat-floor(lat)))+0.5); - y0=(int)((1199.0*(lon-floor(lon)))+0.5); + x0=(int)(1199.0*(lat-floor(lat))); + y0=(int)(1199.0*(lon-floor(lon))); mask=dem[indx].mask[x0][y0]; @@ -2320,17 +3657,30 @@ void WritePPM(char *filename) break; default: - /* Water: Medium Blue */ - if (dem[indx].data[x0][y0]==0) - fprintf(fd,"%c%c%c",0,0,170); + if (ngs) /* No terrain */ + fprintf(fd,"%c%c%c",255,255,255); else { - /* Elevation: Greyscale */ - output=(unsigned)(0.5+pow((double)(dem[indx].data[x0][y0]-min_elevation),one_over_gamma)*conversion); - fprintf(fd,"%c%c%c",output,output,output); + /* Sea-level: Medium Blue */ + if (dem[indx].data[x0][y0]==0) + fprintf(fd,"%c%c%c",0,0,170); + else + { + /* Elevation: Greyscale */ + terrain=(unsigned)(0.5+pow((double)(dem[indx].data[x0][y0]-min_elevation),one_over_gamma)*conversion); + fprintf(fd,"%c%c%c",terrain,terrain,terrain); + } } } } + + else + { + /* We should never get here, but if */ + /* we do, display the region as black */ + + fprintf(fd,"%c%c%c",0,0,0); + } } } @@ -2339,7 +3689,7 @@ void WritePPM(char *filename) fflush(stdout); } -void WritePPMLR(char *filename) +void WritePPMLR(char *filename, unsigned char geo, unsigned char kml, unsigned char ngs, struct site *xmtr, unsigned char txsites) { /* This function generates a topographic map in Portable Pix Map (PPM) format based on the content of flags held in the mask[][] @@ -2347,313 +3697,653 @@ void WritePPMLR(char *filename) 90 degrees from its representation in dem[][] so that north points up and east points right in the image generated. */ - int indx, x, t, t2, x0, y0, minlat, minlon; - unsigned width, height, output; - unsigned char found, mask; - char mapfile[255]; - double conversion, lat, lon, one_over_gamma, one_pixel; + char mapfile[255], geofile[255], kmlfile[255], color=0; + unsigned width, height, red, green, blue, terrain=0; + unsigned char found, mask, cityorcounty; + int indx, x, y, z, colorwidth, x0, y0, loss, level, + hundreds, tens, units, match; + double lat, lon, one_pixel, conversion, one_over_gamma; FILE *fd; one_pixel=1.0/1200.0; one_over_gamma=1.0/GAMMA; conversion=255.0/pow((double)(max_elevation-min_elevation),one_over_gamma); - width=1200*(max_west-min_west); - height=1200*(max_north-min_north); + width=(unsigned)(1200*ReduceAngle(max_west-min_west)); + height=(unsigned)(1200*ReduceAngle(max_north-min_north)); + + LoadLossColors(xmtr[0]); if (filename[0]==0) - strncpy(mapfile, "map.ppm\0",8); - else + strncpy(filename, xmtr[0].filename,254); + + for (x=0; filename[x]!='.' && filename[x]!=0 && x<250; x++) + { + mapfile[x]=filename[x]; + geofile[x]=filename[x]; + kmlfile[x]=filename[x]; + } + + mapfile[x]='.'; + geofile[x]='.'; + kmlfile[x]='.'; + mapfile[x+1]='p'; + geofile[x+1]='g'; + kmlfile[x+1]='k'; + mapfile[x+2]='p'; + geofile[x+2]='e'; + kmlfile[x+2]='m'; + mapfile[x+3]='m'; + geofile[x+3]='o'; + kmlfile[x+3]='l'; + mapfile[x+4]=0; + geofile[x+4]=0; + kmlfile[x+4]=0; + + if (kml==0 && geo) { - for (x=0; filename[x]!='.' && filename[x]!=0 && x<250; x++) - mapfile[x]=filename[x]; + fd=fopen(geofile,"wb"); - mapfile[x]='.'; - mapfile[x+1]='p'; - mapfile[x+2]='p'; - mapfile[x+3]='m'; - mapfile[x+4]=0; + fprintf(fd,"FILENAME\t%s\n",mapfile); + fprintf(fd,"#\t\tX\tY\tLong\t\tLat\n"); + fprintf(fd,"TIEPOINT\t0\t0\t%d.000\t\t%d.000\n",(max_west<180?-max_west:360-max_west),max_north); + fprintf(fd,"TIEPOINT\t%u\t%u\t%d.000\t\t%.3f\n",width-1,height+29,(min_west<180?-min_west:360-min_west),(double)(min_north-0.025)); + fprintf(fd,"IMAGESIZE\t%u\t%u\n",width,height+30); + fprintf(fd,"#\n# Auto Generated by SPLAT! v%s\n#\n",splat_version); + + fclose(fd); } - fd=fopen(mapfile,"wb"); + if (kml && geo==0) + { + fd=fopen(kmlfile,"wb"); + + fprintf(fd,"\n"); + fprintf(fd,"\n"); + fprintf(fd,"\n",splat_version); + fprintf(fd," \n"); + fprintf(fd," SPLAT!\n"); + fprintf(fd," %s Transmitter Path Loss Overlay\n",xmtr[0].name); + fprintf(fd," \n"); + fprintf(fd," SPLAT! Path Loss Overlay\n"); + fprintf(fd," SPLAT! Coverage\n"); + fprintf(fd," \n"); + fprintf(fd," %s\n",mapfile); + fprintf(fd," \n"); + fprintf(fd," 128\n"); + fprintf(fd," \n"); + fprintf(fd," %.5f\n",(double)max_north-one_pixel); + fprintf(fd," %.5f\n",(double)min_north); + fprintf(fd," %.5f\n",((double)min_west<180.0?(double)-min_west:360.0-(double)min_west)); + fprintf(fd," %.5f\n",(((double)max_west-one_pixel)<180.0?-((double)max_west-one_pixel):(360.0-(double)max_west-one_pixel))); + fprintf(fd," 0.0\n"); + fprintf(fd," \n"); + fprintf(fd," \n"); + + for (x=0; x\n"); + fprintf(fd," %s\n",xmtr[x].name); + fprintf(fd," 1\n"); + fprintf(fd," \n"); + fprintf(fd," \n"); + fprintf(fd," 1\n"); + fprintf(fd," relativeToGround\n"); + fprintf(fd," %f,%f,%f\n",(xmtr[x].lon<180.0?-xmtr[x].lon:360.0-xmtr[x].lon), xmtr[x].lat, xmtr[x].alt); + fprintf(fd," \n"); + fprintf(fd," \n"); + } - fprintf(fd,"P6\n%u %u\n255\n",width,height+30); + fprintf(fd," \n"); + fprintf(fd,"\n"); - fprintf(stdout,"\nWriting \"%s\" (%ux%u pixmap image)... ",mapfile,width,height+30); + fclose(fd); + } + + fd=fopen(mapfile,"wb"); + + fprintf(fd,"P6\n%u %u\n255\n",width,(kml?height:height+30)); + fprintf(stdout,"\nWriting \"%s\" (%ux%u pixmap image)... ",mapfile,width,(kml?height:height+30)); fflush(stdout); - for (lat=(double)max_north; lat>=(double)min_north; lat-=one_pixel) + for (y=0, lat=(double)max_north-one_pixel; y<(int)height; y++, lat=(double)max_north-(one_pixel*(double)y)) { - for (lon=(double)max_west; lon>=(double)min_west; lon-=one_pixel) + for (x=0, lon=(double)max_west-one_pixel; x<(int)width; x++, lon=(double)max_west-(one_pixel*(double)x)) { - minlat=(int)floor(lat); - minlon=(int)floor(lon); + if (lon<0.0) + lon+=360.0; - for (indx=0, found=0; indx=(double)dem[indx].min_north && lat<(double)dem[indx].max_north && LonDiff(lon,(double)dem[indx].min_west)>=0.0 && LonDiff(lon,(double)dem[indx].max_west)<0.0) found=1; else indx++; + if (found) { - x0=(int)((1199.0*(lat-floor(lat)))+0.5); - y0=(int)((1199.0*(lon-floor(lon)))+0.5); + x0=(int)(1199.0*(lat-floor(lat))); + y0=(int)(1199.0*(lon-floor(lon))); mask=dem[indx].mask[x0][y0]; + loss=(dem[indx].signal[x0][y0]); + cityorcounty=0; - if (mask&2) - { - /* Text Labels - Black or Red */ - if (mask&120) - fprintf(fd,"%c%c%c",0,0,0); - else - fprintf(fd,"%c%c%c",255,0,0); - } + match=255; - else if (mask&4) - /* County Boundaries: Black */ - fprintf(fd,"%c%c%c",0,0,0); + red=0; + green=0; + blue=0; - else if (mask&1 && !((mask&248)==192)) + if (loss<=region.level[0]) + match=0; + else { - /* Outside Analysis Range */ - /* Display Greyscale / Sea Level */ - - if (dem[indx].data[x0][y0]==0) - fprintf(fd,"%c%c%c",0,0,170); - else + for (z=1; (z=region.level[z-1] && loss>3) + if (match=180 && green<=75 && blue<=75 && loss!=0) + fprintf(fd,"%c%c%c",255^red,255^green,255^blue); + else + fprintf(fd,"%c%c%c",255,0,0); - case 12: - /* Tan */ - fprintf(fd,"%c%c%c",210,180,140); - break; + cityorcounty=1; + } - case 13: - /* Magenta 1 */ - fprintf(fd,"%c%c%c",243,110,205); - break; + else if ((mask&4) && (kml==0)) + { + /* County Boundaries: Black */ - case 14: - /* Gold2 */ - fprintf(fd,"%c%c%c",238,201,0); - break; + fprintf(fd,"%c%c%c",0,0,0); - case 15: - /* Medium Spring Green */ - fprintf(fd,"%c%c%c",0,250,154); - break; + cityorcounty=1; + } - case 16: - /* Very light Blue */ - fprintf(fd,"%c%c%c",244,244,255); - break; + if (cityorcounty==0) + { + if (loss>maxdB || loss==0) + { + if (ngs) /* No terrain */ + fprintf(fd,"%c%c%c",255,255,255); + else + { + /* Display land or sea elevation */ + + if (dem[indx].data[x0][y0]==0) + fprintf(fd,"%c%c%c",0,0,170); + else + { + terrain=(unsigned)(0.5+pow((double)(dem[indx].data[x0][y0]-min_elevation),one_over_gamma)*conversion); + fprintf(fd,"%c%c%c",terrain,terrain,terrain); + } + } + } - default: - /* Land / Sea */ - if (dem[indx].data[x0][y0]==0) - fprintf(fd,"%c%c%c",0,0,170); else { - /* Elevation: Greyscale */ - output=(unsigned)(0.5+pow((double)(dem[indx].data[x0][y0]-min_elevation),one_over_gamma)*conversion); - fprintf(fd,"%c%c%c",output,output,output); + /* Plot path loss in color */ + + if (red!=0 || green!=0 || blue!=0) + fprintf(fd,"%c%c%c",red,green,blue); + + else /* terrain / sea-level */ + { + if (dem[indx].data[x0][y0]==0) + fprintf(fd,"%c%c%c",0,0,170); + else + { + /* Elevation: Greyscale */ + terrain=(unsigned)(0.5+pow((double)(dem[indx].data[x0][y0]-min_elevation),one_over_gamma)*conversion); + fprintf(fd,"%c%c%c",terrain,terrain,terrain); + } + } } } } + + else + { + /* We should never get here, but if */ + /* we do, display the region as black */ + + fprintf(fd,"%c%c%c",0,0,0); + } } } - x0=width/16; - - for (y0=0; y0<30; y0++) + if (kml==0 && color) { - for (indx=0; indx<16; indx++) + /* Display legend along bottom of image */ + + colorwidth=(int)rint((float)width/(float)region.levels); + + for (y0=0; y0<30; y0++) { - for (x=0; x0) + level-=(hundreds*100); + + tens=level/10; + + if (tens>0) + level-=(tens*10); - if (y0>=10 && y0<=18) + units=level; + + if (y0>=8 && y0<=23) { - if (t2>9) + if (hundreds>0) { - if (x>=11 && x<=17) - if (smallfont[t2/10][y0-10][x-11]) - t=255; + if (x>=11 && x<=18) + if (fontdata[16*(hundreds+'0')+(y0-8)]&(128>>(x-11))) + indx=255; } - if (x>=19 && x<=25) - if (smallfont[t2%10][y0-10][x-19]) - t=255; + if (tens>0 || hundreds>0) + { + if (x>=19 && x<=26) + if (fontdata[16*(tens+'0')+(y0-8)]&(128>>(x-19))) + indx=255; + } - if (x>=27 && x<=33) - if (smallfont[0][y0-10][x-27]) - t=255; + if (x>=27 && x<=34) + if (fontdata[16*(units+'0')+(y0-8)]&(128>>(x-27))) + indx=255; + + if (x>=42 && x<=49) + if (fontdata[16*('d')+(y0-8)]&(128>>(x-42))) + indx=255; + + if (x>=50 && x<=57) + if (fontdata[16*('B')+(y0-8)]&(128>>(x-50))) + indx=255; } - switch (t) + if (indx>region.levels) + fprintf(fd,"%c%c%c",0,0,0); + else { - case 0: - /* Green */ - fprintf(fd,"%c%c%c",0,255,0); - break; + red=region.color[indx][0]; + green=region.color[indx][1]; + blue=region.color[indx][2]; - case 1: - /* Pink */ - fprintf(fd,"%c%c%c",255,192,203); - break; + fprintf(fd,"%c%c%c",red,green,blue); + } + } + } + } - case 2: - /* Cyan */ - fprintf(fd,"%c%c%c",0,255,255); - break; + fclose(fd); + fprintf(stdout,"Done!\n"); + fflush(stdout); +} - case 3: - /* Yellow */ - fprintf(fd,"%c%c%c",255,255,0); - break; +void WritePPMSS(char *filename, unsigned char geo, unsigned char kml, unsigned char ngs, struct site *xmtr, unsigned char txsites) +{ + /* This function generates a topographic map in Portable Pix Map + (PPM) format based on the signal strength values held in the + signal[][] array. The image created is rotated counter-clockwise + 90 degrees from its representation in dem[][] so that north + points up and east points right in the image generated. */ - case 4: - /* Medium Violet */ - fprintf(fd,"%c%c%c",161,131,224); - break; + char mapfile[255], geofile[255], kmlfile[255], color=0; + unsigned width, height, terrain, red, green, blue; + unsigned char found, mask, cityorcounty; + int indx, x, y, z=1, x0, y0, signal, level, hundreds, + tens, units, match, colorwidth; + double lat, lon, one_pixel, conversion, one_over_gamma; + FILE *fd; - case 5: - /* Orange */ - fprintf(fd,"%c%c%c",255,165,0); - break; + one_pixel=1.0/1200.0; + one_over_gamma=1.0/GAMMA; + conversion=255.0/pow((double)(max_elevation-min_elevation),one_over_gamma); - case 6: - /* Light Green */ - fprintf(fd,"%c%c%c",193,255,193); - break; + width=(unsigned)(1200*ReduceAngle(max_west-min_west)); + height=(unsigned)(1200*ReduceAngle(max_north-min_north)); - case 7: - /* Red Pink */ - fprintf(fd,"%c%c%c",255,108,108); - break; + LoadSignalColors(xmtr[0]); - case 8: - /* Green Yellow */ - fprintf(fd,"%c%c%c",173,255,47); - break; + if (filename[0]==0) + strncpy(filename, xmtr[0].filename,254); - case 9: - /* Blanched Almond */ - fprintf(fd,"%c%c%c",255,235,184); - break; + for (x=0; filename[x]!='.' && filename[x]!=0 && x<250; x++) + { + mapfile[x]=filename[x]; + geofile[x]=filename[x]; + kmlfile[x]=filename[x]; + } - case 10: - /* Dark Turquoise */ - fprintf(fd,"%c%c%c",0,206,209); - break; + mapfile[x]='.'; + geofile[x]='.'; + kmlfile[x]='.'; + mapfile[x+1]='p'; + geofile[x+1]='g'; + kmlfile[x+1]='k'; + mapfile[x+2]='p'; + geofile[x+2]='e'; + kmlfile[x+2]='m'; + mapfile[x+3]='m'; + geofile[x+3]='o'; + kmlfile[x+3]='l'; + mapfile[x+4]=0; + geofile[x+4]=0; + kmlfile[x+4]=0; + + if (geo && kml==0) + { + fd=fopen(geofile,"wb"); - case 11: - /* Tan */ - fprintf(fd,"%c%c%c",210,180,140); - break; + fprintf(fd,"FILENAME\t%s\n",mapfile); + fprintf(fd,"#\t\tX\tY\tLong\t\tLat\n"); + fprintf(fd,"TIEPOINT\t0\t0\t%d.000\t\t%d.000\n",(max_west<180?-max_west:360-max_west),max_north); + fprintf(fd,"TIEPOINT\t%u\t%u\t%d.000\t\t%.3f\n",width-1,height+29,(min_west<180?-min_west:360-min_west),(double)(min_north-0.025)); + fprintf(fd,"IMAGESIZE\t%u\t%u\n",width,height+30); + fprintf(fd,"#\n# Auto Generated by SPLAT! v%s\n#\n",splat_version); - case 12: - /* Magenta 1 */ - fprintf(fd,"%c%c%c",243,110,205); - break; + fclose(fd); + } - case 13: - /* Gold2 */ - fprintf(fd,"%c%c%c",238,201,0); - break; + if (kml && geo==0) + { + fd=fopen(kmlfile,"wb"); + + fprintf(fd,"\n"); + fprintf(fd,"\n"); + fprintf(fd,"\n",splat_version); + fprintf(fd," \n"); + fprintf(fd," SPLAT!\n"); + fprintf(fd," %s Transmitter Coverage Overlay\n",xmtr[0].name); + fprintf(fd," \n"); + fprintf(fd," SPLAT! Signal Strength Overlay\n"); + fprintf(fd," SPLAT! Coverage\n"); + fprintf(fd," \n"); + fprintf(fd," %s\n",mapfile); + fprintf(fd," \n"); + fprintf(fd," 128\n"); + fprintf(fd," \n"); + fprintf(fd," %.5f\n",(double)max_north-one_pixel); + fprintf(fd," %.5f\n",(double)min_north); + fprintf(fd," %.5f\n",((double)min_west<180.0?(double)-min_west:360.0-(double)min_west)); + fprintf(fd," %.5f\n",(((double)max_west-one_pixel)<180.0?-((double)max_west-one_pixel):(360.0-(double)max_west-one_pixel))); + fprintf(fd," 0.0\n"); + fprintf(fd," \n"); + fprintf(fd," \n"); - case 14: - /* Medium Spring Green */ - fprintf(fd,"%c%c%c",0,250,154); - break; + for (x=0; x\n"); + fprintf(fd," %s\n",xmtr[x].name); + fprintf(fd," 1\n"); + fprintf(fd," \n"); + fprintf(fd," \n"); + fprintf(fd," 1\n"); + fprintf(fd," relativeToGround\n"); + fprintf(fd," %f,%f,%f\n",(xmtr[x].lon<180.0?-xmtr[x].lon:360.0-xmtr[x].lon), xmtr[x].lat, xmtr[x].alt); + fprintf(fd," \n"); + fprintf(fd," \n"); + } + + fprintf(fd," \n"); + fprintf(fd,"\n"); + + fclose(fd); + } + + fd=fopen(mapfile,"wb"); + + fprintf(fd,"P6\n%u %u\n255\n",width,(kml?height:height+30)); + fprintf(stdout,"\nWriting \"%s\" (%ux%u pixmap image)... ",mapfile,width,(kml?height:height+30)); + fflush(stdout); + + for (y=0, lat=(double)max_north-one_pixel; y<(int)height; y++, lat=(double)max_north-(one_pixel*(double)y)) + { + for (x=0, lon=(double)max_west-one_pixel; x<(int)width; x++, lon=(double)max_west-(one_pixel*(double)x)) + { + if (lon<0.0) + lon+=360.0; + + for (indx=0, found=0; indx=(double)dem[indx].min_north && lat<(double)dem[indx].max_north && LonDiff(lon,(double)dem[indx].min_west)>=0.0 && LonDiff(lon,(double)dem[indx].max_west)<0.0) + found=1; + else + indx++; + + if (found) + { + x0=(int)(1199.0*(lat-floor(lat))); + y0=(int)(1199.0*(lon-floor(lon))); + + mask=dem[indx].mask[x0][y0]; + signal=(dem[indx].signal[x0][y0])-100; + cityorcounty=0; + + match=255; + + red=0; + green=0; + blue=0; + + if (signal>=region.level[0]) + match=0; + else + { + for (z=1; (z=region.level[z]) + match=z; + } + } + + if (match=180 && green<=75 && blue<=75) + fprintf(fd,"%c%c%c",255^red,255^green,255^blue); + else + fprintf(fd,"%c%c%c",255,0,0); + + cityorcounty=1; + } + + else if ((mask&4) && (kml==0)) + { + /* County Boundaries: Black */ - case 255: - /* Black */ fprintf(fd,"%c%c%c",0,0,0); - break; - default: - /* Very Light Blue */ - fprintf(fd,"%c%c%c",244,244,255); + cityorcounty=1; + } + + if (cityorcounty==0) + { + if (dem[indx].signal[x0][y0]==0) + { + if (ngs) + fprintf(fd,"%c%c%c",255,255,255); + else + { + /* Display land or sea elevation */ + + if (dem[indx].data[x0][y0]==0) + fprintf(fd,"%c%c%c",0,0,170); + else + { + terrain=(unsigned)(0.5+pow((double)(dem[indx].data[x0][y0]-min_elevation),one_over_gamma)*conversion); + fprintf(fd,"%c%c%c",terrain,terrain,terrain); + } + } + } + + else + { + /* Plot field strength regions in color */ + + if (red!=0 || green!=0 || blue!=0) + fprintf(fd,"%c%c%c",red,green,blue); + + else /* terrain / sea-level */ + { + if (ngs) + fprintf(fd,"%c%c%c",255,255,255); + else + { + if (dem[indx].data[x0][y0]==0) + fprintf(fd,"%c%c%c",0,0,170); + else + { + /* Elevation: Greyscale */ + terrain=(unsigned)(0.5+pow((double)(dem[indx].data[x0][y0]-min_elevation),one_over_gamma)*conversion); + fprintf(fd,"%c%c%c",terrain,terrain,terrain); + } + } + } + } + } + } + + else + { + /* We should never get here, but if */ + /* we do, display the region as black */ + + fprintf(fd,"%c%c%c",0,0,0); + } + } + } + + if (kml==0 && color) + { + /* Display legend along bottom of image */ + + colorwidth=(int)rint((float)width/(float)region.levels); + + for (y0=0; y0<30; y0++) + { + for (x0=0; x0<(int)width; x0++) + { + indx=x0/colorwidth; + x=x0%colorwidth; + level=region.level[indx]; + + hundreds=level/100; + + if (hundreds>0) + level-=(hundreds*100); + + tens=level/10; + + if (tens>0) + level-=(tens*10); + + units=level; + + if (y0>=8 && y0<=23) + { + if (hundreds>0) + { + if (x>=5 && x<=12) + if (fontdata[16*(hundreds+'0')+(y0-8)]&(128>>(x-5))) + indx=255; + } + + if (tens>0 || hundreds>0) + { + if (x>=13 && x<=20) + if (fontdata[16*(tens+'0')+(y0-8)]&(128>>(x-13))) + indx=255; + } + + if (x>=21 && x<=28) + if (fontdata[16*(units+'0')+(y0-8)]&(128>>(x-21))) + indx=255; + + if (x>=36 && x<=43) + if (fontdata[16*('d')+(y0-8)]&(128>>(x-36))) + indx=255; + + if (x>=44 && x<=51) + if (fontdata[16*('B')+(y0-8)]&(128>>(x-44))) + indx=255; + + if (x>=52 && x<=59) + if (fontdata[16*('u')+(y0-8)]&(128>>(x-52))) + indx=255; + + if (x>=60 && x<=67) + if (fontdata[16*('V')+(y0-8)]&(128>>(x-60))) + indx=255; + + if (x>=68 && x<=75) + if (fontdata[16*('/')+(y0-8)]&(128>>(x-68))) + indx=255; + + if (x>=76 && x<=83) + if (fontdata[16*('m')+(y0-8)]&(128>>(x-76))) + indx=255; + } + + if (indx>region.levels) + fprintf(fd,"%c%c%c",0,0,0); + else + { + red=region.color[indx][0]; + green=region.color[indx][1]; + blue=region.color[indx][2]; + + fprintf(fd,"%c%c%c",red,green,blue); } } } @@ -2671,18 +4361,23 @@ void GraphTerrain(struct site source, struct site destination, char *name) and destination locations. "filename" is the name assigned to the output file generated by gnuplot. The filename extension is used to set gnuplot's terminal setting and output file type. - If no extension is found, .gif is assumed. */ + If no extension is found, .png is assumed. */ - int x, y, z; - char filename[255], term[15], ext[15]; - FILE *fd=NULL; + int x, y, z; + char filename[255], term[30], ext[15]; + FILE *fd=NULL; ReadPath(destination,source); fd=fopen("profile.gp","wb"); for (x=0; xmaxangle) maxangle=angle; } - fprintf(fd,"%f\t%f\n",path.distance[path.length-1],refangle); - fprintf(fd2,"%f\t%f\n",path.distance[path.length-1],refangle); + if (metric) + { + fprintf(fd,"%f\t%f\n",KM_PER_MILE*path.distance[path.length-1],refangle); + fprintf(fd2,"%f\t%f\n",KM_PER_MILE*path.distance[path.length-1],refangle); + } + + else + { + fprintf(fd,"%f\t%f\n",path.distance[path.length-1],refangle); + fprintf(fd2,"%f\t%f\n",path.distance[path.length-1],refangle); + } fclose(fd); fclose(fd2); @@ -2806,8 +4532,8 @@ void GraphElevation(struct site source, struct site destination, char *name) /* Default filename and output file type */ strncpy(filename,"profile\0",8); - strncpy(term,"gif\0",4); - strncpy(ext,"gif\0",4); + strncpy(term,"png\0",4); + strncpy(ext,"png\0",4); } else @@ -2831,11 +4557,11 @@ void GraphElevation(struct site source, struct site destination, char *name) } else - { /* No extension -- Default is gif */ + { /* No extension -- Default is png */ filename[x]=0; - strncpy(term,"gif\0",4); - strncpy(ext,"gif\0",4); + strncpy(term,"png\0",4); + strncpy(ext,"png\0",4); } } @@ -2846,21 +4572,25 @@ void GraphElevation(struct site source, struct site destination, char *name) strncpy(ext,"ps\0",3); else if (strncmp(ext,"ps",2)==0) - strncpy(term,"postscript\0",11); - - fprintf(stdout,"Writing \"%s.%s\"...",filename,ext); - fflush(stdout); + strncpy(term,"postscript enhanced color\0",26); fd=fopen("splat.gp","w"); fprintf(fd,"set grid\n"); fprintf(fd,"set yrange [%2.3f to %2.3f]\n", (-fabs(refangle)-0.25), maxangle+0.25); + fprintf(fd,"set encoding iso_8859_1\n"); fprintf(fd,"set term %s\n",term); - fprintf(fd,"set title \"SPLAT! Elevation Profile\"\n"); - fprintf(fd,"set xlabel \"Distance Between %s and %s (miles)\"\n",destination.name,source.name); - fprintf(fd,"set ylabel \"Elevation Angle Along Path Between %s and %s (degrees)\"\n",destination.name,source.name); + fprintf(fd,"set title \"SPLAT! Elevation Profile Between %s and %s (%.2f%c azimuth)\"\n",destination.name,source.name,Azimuth(destination,source),176); + + if (metric) + fprintf(fd,"set xlabel \"Distance Between %s and %s (%.2f kilometers)\"\n",destination.name,source.name,KM_PER_MILE*Distance(source,destination)); + else + fprintf(fd,"set xlabel \"Distance Between %s and %s (%.2f miles)\"\n",destination.name,source.name,Distance(source,destination)); + + + fprintf(fd,"set ylabel \"Elevation Angle Along LOS Path Between %s and %s (degrees)\"\n",destination.name,source.name); fprintf(fd,"set output \"%s.%s\"\n",filename,ext); - fprintf(fd,"plot \"profile.gp\" title \"Real Earth Profile\" with lines, \"reference.gp\" title \"Line Of Sight Path\" with lines\n"); + fprintf(fd,"plot \"profile.gp\" title \"Real Earth Profile\" with lines, \"reference.gp\" title \"Line of Sight Path (%.2f%c elevation)\" with lines\n",refangle,176); fclose(fd); @@ -2872,7 +4602,7 @@ void GraphElevation(struct site source, struct site destination, char *name) unlink("profile.gp"); unlink("reference.gp"); - fprintf(stdout," Done!\n"); + fprintf(stdout,"\nElevation plot written to: \"%s.%s\"",filename,ext); fflush(stdout); } @@ -2880,68 +4610,209 @@ void GraphElevation(struct site source, struct site destination, char *name) fprintf(stderr,"\n*** ERROR: Error occurred invoking gnuplot!\n"); } -void GraphHeight(struct site source, struct site destination, char *name) +void GraphHeight(struct site source, struct site destination, char *name, double f, unsigned char n) { /* This function invokes gnuplot to generate an appropriate output file indicating the terrain profile between the source - and destination locations. What is plotted is the height of land - above or below a straight line between the receibe and transmit - sites. "filename" is the name assigned to the output file - generated by gnuplot. The filename extension is used to - set gnuplot's terminal setting and output file type. - If no extension is found, .gif is assumed. */ - - int x, y, z; - char filename[255], term[15], ext[15]; - double a, b, c, height, refangle, cangle, maxheight=-100000.0, - minheight=100000.0; - struct site remote; - FILE *fd=NULL, *fd2=NULL; + and destination locations referenced to the line-of-sight path + between the receive and transmit sites. "filename" is the name + assigned to the output file generated by gnuplot. The filename + extension is used to set gnuplot's terminal setting and output + file type. If no extension is found, .png is assumed. */ + + int x, y, z; + char filename[255], term[30], ext[15]; + double a, b, c, height=0.0, refangle, cangle, maxheight=-100000.0, + minheight=100000.0, lambda=0.0, f_zone=0.0, fpt6_zone=0.0, + nm=0.0, nb=0.0, ed=0.0, es=0.0, r=0.0, d=0.0, d1=0.0, + terrain, azimuth, distance, dheight=0.0, minterrain=100000.0, + minearth=100000.0, miny, maxy, min2y, max2y; + struct site remote; + FILE *fd=NULL, *fd2=NULL, *fd3=NULL, *fd4=NULL, *fd5=NULL; ReadPath(destination,source); /* destination=RX, source=TX */ + azimuth=Azimuth(destination,source); + distance=Distance(destination,source); refangle=ElevationAngle(destination,source); b=GetElevation(destination)+destination.alt+earthradius; + /* Wavelength and path distance (great circle) in feet. */ + + if (f) + { + lambda=9.8425e8/(f*1e6); + d=5280.0*path.distance[path.length-1]; + } + + if (n) + { + ed=GetElevation(destination); + es=GetElevation(source); + nb=-destination.alt-ed; + nm=(-source.alt-es-nb)/(path.distance[path.length-1]); + } + fd=fopen("profile.gp","wb"); fd2=fopen("reference.gp","wb"); + fd5=fopen("curvature.gp", "wb"); - for (x=1; x0) + { + f_zone+=r; + fpt6_zone+=r; + } + } + + else + r=0.0; + + if (metric) + { + fprintf(fd,"%f\t%f\n",KM_PER_MILE*path.distance[x],METERS_PER_FOOT*height); + fprintf(fd2,"%f\t%f\n",KM_PER_MILE*path.distance[x],METERS_PER_FOOT*r); + fprintf(fd5,"%f\t%f\n",KM_PER_MILE*path.distance[x],METERS_PER_FOOT*(height-terrain)); + } + + else + { + fprintf(fd,"%f\t%f\n",path.distance[x],height); + fprintf(fd2,"%f\t%f\n",path.distance[x],r); + fprintf(fd5,"%f\t%f\n",path.distance[x],height-terrain); + } + + if (f) + { + if (metric) + { + fprintf(fd3,"%f\t%f\n",KM_PER_MILE*path.distance[x],METERS_PER_FOOT*f_zone); + fprintf(fd4,"%f\t%f\n",KM_PER_MILE*path.distance[x],METERS_PER_FOOT*fpt6_zone); + } + + else + { + fprintf(fd3,"%f\t%f\n",path.distance[x],f_zone); + fprintf(fd4,"%f\t%f\n",path.distance[x],fpt6_zone); + } + + if (f_zonemaxheight) maxheight=height; if (heightmaxheight) + maxheight=r; + + if (terrainmaxheight) + maxheight=r; - fprintf(fd,"%f\t%f\n",path.distance[path.length-1],0.0); - fprintf(fd2,"%f\t%f\n",path.distance[path.length-1],0.0); + if (r acos(B), then B > A. */ + + for (x=path.length-1; x>0; x--) + { + site_x.lat=path.lat[x]; + site_x.lon=path.lon[x]; + site_x.alt=0.0; + + h_x=GetElevation(site_x)+earthradius; + d_x=5280.0*Distance(rcvr,site_x); + + /* Deal with the LOS path first. */ + + cos_test_angle=((h_r*h_r)+(d_x*d_x)-(h_x*h_x))/(2.0*h_r*d_x); + + if (cos_tx_angle>cos_test_angle) + { + if (h_r==h_r_orig) + fprintf(outfile,"Between %s and %s, SPLAT! detected obstructions at:\n\n",rcvr.name,xmtr.name); + + if (site_x.lat>=0.0) + { + if (metric) + fprintf(outfile,"\t%.4f N, %.4f W, %5.2f kilometers, %6.2f meters AMSL\n",site_x.lat, site_x.lon, KM_PER_MILE*(d_x/5280.0), METERS_PER_FOOT*(h_x-earthradius)); + else + fprintf(outfile,"\t%.4f N, %.4f W, %5.2f miles, %6.2f feet AMSL\n",site_x.lat, site_x.lon, d_x/5280.0, h_x-earthradius); + } + + else + { + if (metric) + fprintf(outfile,"\t%.4f S, %.4f W, %5.2f kilometers, %6.2f meters AMSL\n",-site_x.lat, site_x.lon, KM_PER_MILE*(d_x/5280.0), METERS_PER_FOOT*(h_x-earthradius)); + else + + fprintf(outfile,"\t%.4f S, %.4f W, %5.2f miles, %6.2f feet AMSL\n",-site_x.lat, site_x.lon, d_x/5280.0, h_x-earthradius); + } + } + + while (cos_tx_angle>cos_test_angle) + { + h_r+=1; + cos_test_angle=((h_r*h_r)+(d_x*d_x)-(h_x*h_x))/(2.0*h_r*d_x); + cos_tx_angle=((h_r*h_r)+(d_tx*d_tx)-(h_t*h_t))/(2.0*h_r*d_tx); + } + + if (f) + { + /* Now clear the first Fresnel zone... */ + + cos_tx_angle_f1=((h_r_f1*h_r_f1)+(d_tx*d_tx)-(h_t*h_t))/(2.0*h_r_f1*d_tx); + h_los=sqrt(h_r_f1*h_r_f1+d_x*d_x-2*h_r_f1*d_x*cos_tx_angle_f1); + h_f=h_los-sqrt(lambda*d_x*(d_tx-d_x)/d_tx); + + while (h_fh_r_orig) + { + if (metric) + sprintf(string,"\nAntenna at %s must be raised to at least %.2f meters AGL\nto clear all obstructions detected by SPLAT!\n",rcvr.name, METERS_PER_FOOT*(h_r-GetElevation(rcvr)-earthradius)); + else + sprintf(string,"\nAntenna at %s must be raised to at least %.2f feet AGL\nto clear all obstructions detected by SPLAT!\n",rcvr.name, h_r-GetElevation(rcvr)-earthradius); + } + + else + sprintf(string,"\nNo obstructions to LOS path due to terrain were detected by SPLAT!\n"); + + if (f) + { + if (h_r_fpt6>h_r_orig) + { + if (metric) + sprintf(string_fpt6,"\nAntenna at %s must be raised to at least %.2f meters AGL\nto clear %.0f%c of the first Fresnel zone.\n",rcvr.name, METERS_PER_FOOT*(h_r_fpt6-GetElevation(rcvr)-earthradius),fzone_clearance*100.0,37); + + else + sprintf(string_fpt6,"\nAntenna at %s must be raised to at least %.2f feet AGL\nto clear %.0f%c of the first Fresnel zone.\n",rcvr.name, h_r_fpt6-GetElevation(rcvr)-earthradius,fzone_clearance*100.0,37); + } + + else + sprintf(string_fpt6,"\n%.0f%c of the first Fresnel zone is clear.\n",fzone_clearance*100.0,37); + + if (h_r_f1>h_r_orig) + { + if (metric) + sprintf(string_f1,"\nAntenna at %s must be raised to at least %.2f meters AGL\nto clear the first Fresnel zone.\n",rcvr.name, METERS_PER_FOOT*(h_r_f1-GetElevation(rcvr)-earthradius)); + + else + sprintf(string_f1,"\nAntenna at %s must be raised to at least %.2f feet AGL\nto clear the first Fresnel zone.\n",rcvr.name, h_r_f1-GetElevation(rcvr)-earthradius); + + } + + else + sprintf(string_f1,"\nThe first Fresnel zone is clear.\n\n"); + } + + fprintf(outfile,"%s",string); + + if (f) + { + fprintf(outfile,"%s",string_f1); + fprintf(outfile,"%s",string_fpt6); + } +} + +void PathReport(struct site source, struct site destination, char *name, char graph_it) +{ + /* This function writes a SPLAT! Path Report (name.txt) to + the filesystem. If (graph_it == 1), then gnuplot is invoked + to generate an appropriate output file indicating the Longley-Rice + model loss between the source and destination locations. + "filename" is the name assigned to the output file generated + by gnuplot. The filename extension is used to set gnuplot's + terminal setting and output file type. If no extension is + found, .png is assumed. */ + + int x, y, z, errnum; + char filename[255], term[30], ext[15], strmode[100], + report_name[80], block=0; + double maxloss=-100000.0, minloss=100000.0, loss, haavt, + angle1, angle2, azimuth, pattern=1.0, patterndB=0.0, + total_loss=0.0, cos_xmtr_angle, cos_test_angle=0.0, + source_alt, test_alt, dest_alt, source_alt2, dest_alt2, + distance, elevation, four_thirds_earth, field_strength, + free_space_loss=0.0, voltage; + FILE *fd=NULL, *fd2=NULL; + + sprintf(report_name,"%s-to-%s.txt",source.name,destination.name); + + four_thirds_earth=EARTHRADIUS*(4.0/3.0); + + for (x=0; report_name[x]!=0; x++) if (report_name[x]==32 || report_name[x]==17 || report_name[x]==92 || report_name[x]==42 || report_name[x]==47) report_name[x]='_'; fd2=fopen(report_name,"w"); - fprintf(fd2,"\n\t--==[ SPLAT! v%s Longley-Rice Model Path Loss Report ]==--\n\n",splat_version); - fprintf(fd2,"Analysis of RF path conditions between %s and %s:\n",source.name, destination.name); - fprintf(fd2,"\n-------------------------------------------------------------------------\n\n"); + fprintf(fd2,"\n\t\t--==[ SPLAT! v%s Path Analysis ]==--\n\n",splat_version); + fprintf(fd2,"-------------------------------------------------------------------------\n\n"); fprintf(fd2,"Transmitter site: %s\n",source.name); - fprintf(fd2,"Site location: %.4f North / %.4f West",source.lat, source.lon); - fprintf(fd2, " (%s N / ", dec2dms(source.lat)); + + if (source.lat>=0.0) + { + fprintf(fd2,"Site location: %.4f North / %.4f West",source.lat, source.lon); + fprintf(fd2, " (%s N / ", dec2dms(source.lat)); + } + + else + { + + fprintf(fd2,"Site location: %.4f South / %.4f West",-source.lat, source.lon); + fprintf(fd2, " (%s S / ", dec2dms(source.lat)); + } + fprintf(fd2, "%s W)\n", dec2dms(source.lon)); - fprintf(fd2,"Ground elevation: %.2f feet AMSL\n",GetElevation(source)); - fprintf(fd2,"Antenna height: %.2f feet AGL / %.2f feet AMSL\n",source.alt, source.alt+GetElevation(source)); + + if (metric) + { + fprintf(fd2,"Ground elevation: %.2f meters AMSL\n",METERS_PER_FOOT*GetElevation(source)); + fprintf(fd2,"Antenna height: %.2f meters AGL / %.2f meters AMSL\n",METERS_PER_FOOT*source.alt,METERS_PER_FOOT*(source.alt+GetElevation(source))); + } + + else + { + fprintf(fd2,"Ground elevation: %.2f feet AMSL\n",GetElevation(source)); + fprintf(fd2,"Antenna height: %.2f feet AGL / %.2f feet AMSL\n",source.alt, source.alt+GetElevation(source)); + } haavt=haat(source); if (haavt>-4999.0) - fprintf(fd2,"Antenna height above average terrain: %.2f feet\n",haavt); + { + if (metric) + fprintf(fd2,"Antenna height above average terrain: %.2f meters\n",METERS_PER_FOOT*haavt); + else + fprintf(fd2,"Antenna height above average terrain: %.2f feet\n",haavt); + } + + azimuth=Azimuth(source,destination); + angle1=ElevationAngle(source,destination); + angle2=ElevationAngle2(source,destination,earthradius); + + if (got_azimuth_pattern || got_elevation_pattern) + { + x=(int)rint(10.0*(10.0-angle2)); + + if (x>=0 && x<=1000) + pattern=(double)LR.antenna_pattern[(int)rint(azimuth)][x]; + + patterndB=20.0*log10(pattern); + } + + if (metric) + fprintf(fd2,"Distance to %s: %.2f kilometers\n",destination.name,METERS_PER_FOOT*Distance(source,destination)); + + else + fprintf(fd2,"Distance to %s: %.2f miles.\n",destination.name,Distance(source,destination)); + + fprintf(fd2,"Azimuth to %s: %.2f degrees\n",destination.name,azimuth); - fprintf(fd2,"Distance to %s: %.2f miles.\n",destination.name,Distance(source,destination)); - fprintf(fd2,"Azimuth to %s: %.2f degrees.\n",destination.name,Azimuth(source,destination)); + if (angle1>=0.0) + fprintf(fd2,"Elevation angle to %s: %+.4f degrees\n",destination.name,angle1); - angle=ElevationAngle(source,destination); + else + fprintf(fd2,"Depression angle to %s: %+.4f degrees\n",destination.name,angle1); - if (angle>=0.0) - fprintf(fd2,"Angle of elevation between %s and %s: %+.4f degrees.\n",source.name,destination.name,angle); + if ((angle2-angle1)>0.0001) + { + if (angle2<0.0) + fprintf(fd2,"Depression"); + else + fprintf(fd2,"Elevation"); - if (angle<0.0) - fprintf(fd2,"Angle of depression between %s and %s: %+.4f degrees.\n",source.name,destination.name,angle); + fprintf(fd2," angle to the first obstruction: %+.4f degrees\n",angle2); + } fprintf(fd2,"\n-------------------------------------------------------------------------\n\n"); /* Receiver */ fprintf(fd2,"Receiver site: %s\n",destination.name); - fprintf(fd2,"Site location: %.4f North / %.4f West",destination.lat, destination.lon); - fprintf(fd2, " (%s N / ", dec2dms(destination.lat)); + + if (destination.lat>=0.0) + { + fprintf(fd2,"Site location: %.4f North / %.4f West",destination.lat, destination.lon); + fprintf(fd2, " (%s N / ", dec2dms(destination.lat)); + } + + else + { + fprintf(fd2,"Site location: %.4f South / %.4f West",-destination.lat, destination.lon); + fprintf(fd2, " (%s S / ", dec2dms(destination.lat)); + } + fprintf(fd2, "%s W)\n", dec2dms(destination.lon)); - fprintf(fd2,"Ground elevation: %.2f feet AMSL\n",GetElevation(destination)); - fprintf(fd2,"Antenna height: %.2f feet AGL / %.2f feet AMSL\n",destination.alt, destination.alt+GetElevation(destination)); + + if (metric) + { + fprintf(fd2,"Ground elevation: %.2f meters AMSL\n",METERS_PER_FOOT*GetElevation(destination)); + fprintf(fd2,"Antenna height: %.2f meters AGL / %.2f meters AMSL\n",METERS_PER_FOOT*destination.alt, METERS_PER_FOOT*(destination.alt+GetElevation(destination))); + } + + else + { + fprintf(fd2,"Ground elevation: %.2f feet AMSL\n",GetElevation(destination)); + fprintf(fd2,"Antenna height: %.2f feet AGL / %.2f feet AMSL\n",destination.alt, destination.alt+GetElevation(destination)); + } haavt=haat(destination); if (haavt>-4999.0) - fprintf(fd2,"Antenna height above average terrain: %.2f feet\n",haavt); + { + if (metric) + fprintf(fd2,"Antenna height above average terrain: %.2f meters\n",METERS_PER_FOOT*haavt); + else + fprintf(fd2,"Antenna height above average terrain: %.2f feet\n",haavt); + } + + if (metric) + fprintf(fd2,"Distance to %s: %.2f kilometers\n",source.name,KM_PER_MILE*Distance(source,destination)); + + else + fprintf(fd2,"Distance to %s: %.2f miles\n",source.name,Distance(source,destination)); - fprintf(fd2,"Distance to %s: %.2f miles.\n",source.name,Distance(source,destination)); - fprintf(fd2,"Azimuth to %s: %.2f degrees.\n",source.name,Azimuth(destination,source)); + azimuth=Azimuth(destination,source); - angle=ElevationAngle(destination,source); + angle1=ElevationAngle(destination,source); + angle2=ElevationAngle2(destination,source,earthradius); - if (angle>=0.0) - fprintf(fd2,"Angle of elevation between %s and %s: %+.4f degrees.\n",destination.name,source.name,angle); + fprintf(fd2,"Azimuth to %s: %.2f degrees.\n",source.name,azimuth); - if (angle<0.0) - fprintf(fd2,"Angle of depression between %s and %s: %+.4f degrees.\n",destination.name,source.name,angle); + if (angle1>=0.0) + fprintf(fd2,"Elevation angle to %s: %+.4f degrees\n",source.name,angle1); + + else + fprintf(fd2,"Depression angle to %s: %+.4f degrees\n",source.name,angle1); + + if ((angle2-angle1)>0.0001) + { + if (angle2<0.0) + fprintf(fd2,"Depression"); + else + fprintf(fd2,"Elevation"); + + fprintf(fd2," angle to the first obstruction: %+.4f degrees\n",angle2); + } fprintf(fd2,"\n-------------------------------------------------------------------------\n\n"); - fprintf(fd2,"Longley-Rice path calculation parameters used in this analysis:\n\n"); - fprintf(fd2,"Earth's Dielectric Constant: %.3lf\n",LR.eps_dielect); - fprintf(fd2,"Earth's Conductivity: %.3lf\n",LR.sgm_conductivity); - fprintf(fd2,"Atmospheric Bending Constant (N): %.3lf\n",LR.eno_ns_surfref); - fprintf(fd2,"Frequency: %.3lf (MHz)\n",LR.frq_mhz); - fprintf(fd2,"Radio Climate: %d (",LR.radio_climate); + if (LR.frq_mhz>0.0) + { + fprintf(fd2,"Longley-Rice path calculation parameters used in this analysis:\n\n"); + fprintf(fd2,"Earth's Dielectric Constant: %.3lf\n",LR.eps_dielect); + fprintf(fd2,"Earth's Conductivity: %.3lf Siemens/meter\n",LR.sgm_conductivity); + fprintf(fd2,"Atmospheric Bending Constant (N-units): %.3lf ppm\n",LR.eno_ns_surfref); + fprintf(fd2,"Frequency: %.3lf MHz\n",LR.frq_mhz); + fprintf(fd2,"Radio Climate: %d (",LR.radio_climate); + + switch (LR.radio_climate) + { + case 1: + fprintf(fd2,"Equatorial"); + break; + + case 2: + fprintf(fd2,"Continental Subtropical"); + break; + + case 3: + fprintf(fd2,"Maritime Subtropical"); + break; + + case 4: + fprintf(fd2,"Desert"); + break; + + case 5: + fprintf(fd2,"Continental Temperate"); + break; + + case 6: + fprintf(fd2,"Martitime Temperate, Over Land"); + break; - switch (LR.radio_climate) + case 7: + fprintf(fd2,"Maritime Temperate, Over Sea"); + break; + + default: + fprintf(fd2,"Unknown"); + } + + fprintf(fd2,")\nPolarization: %d (",LR.pol); + + if (LR.pol==0) + fprintf(fd2,"Horizontal"); + + if (LR.pol==1) + fprintf(fd2,"Vertical"); + + fprintf(fd2,")\nFraction of Situations: %.1lf%c\n",LR.conf*100.0,37); + fprintf(fd2,"Fraction of Time: %.1lf%c\n",LR.rel*100.0,37); + + if (LR.erp!=0.0) + { + fprintf(fd2,"Transmitter ERP: "); + + if (LR.erp<1.0) + fprintf(fd2,"%.1lf milliwatts\n",1000.0*LR.erp); + + if (LR.erp>=1.0 && LR.erp<10.0) + fprintf(fd2,"%.1lf Watts\n",LR.erp); + + if (LR.erp>=10.0 && LR.erp<10.0e3) + fprintf(fd2,"%.0lf Watts\n",LR.erp); + + if (LR.erp>=10.0e3) + fprintf(fd2,"%.3lf kilowatts\n",LR.erp/1.0e3); + } + + fprintf(fd2,"\n-------------------------------------------------------------------------\n\n"); + + fprintf(fd2,"Summary for the link between %s and %s:\n\n",source.name, destination.name); + + if (patterndB!=0.0) + fprintf(fd2,"%s antenna pattern towards %s: %.3f (%.2f dB)\n", source.name, destination.name, pattern, patterndB); + + ReadPath(source, destination); /* source=TX, destination=RX */ + + /* Copy elevations along path into the elev_l[] array. */ + + for (x=0; xcos_test_angle) + block=1; + } + + /* At this point, we have the elevation angle + to the first obstruction (if it exists). */ + } + + /* Determine path loss for each point along the + path using Longley-Rice's point_to_point mode + starting at x=2 (number_of_points = 1), the + shortest distance terrain can play a role in + path loss. */ + + elev_l[0]=y-1; /* (number of points - 1) */ + + /* Distance between elevation samples */ + elev_l[1]=METERS_PER_MILE*(path.distance[y]-path.distance[y-1]); + + point_to_point(elev_l, source.alt*METERS_PER_FOOT, + destination.alt*METERS_PER_FOOT, LR.eps_dielect, + LR.sgm_conductivity, LR.eno_ns_surfref, LR.frq_mhz, + LR.radio_climate, LR.pol, LR.conf, LR.rel, loss, + strmode, errnum); + + if (block) + elevation=((acos(cos_test_angle))/deg2rad)-90.0; + else + elevation=((acos(cos_xmtr_angle))/deg2rad)-90.0; + + /* Integrate the antenna's radiation + pattern into the overall path loss. */ + + x=(int)rint(10.0*(10.0-elevation)); + + if (x>=0 && x<=1000) + { + pattern=(double)LR.antenna_pattern[(int)azimuth][x]; + + if (pattern!=0.0) + patterndB=20.0*log10(pattern); + } + + else + patterndB=0.0; + + total_loss=loss-patterndB; + + if (metric) + fprintf(fd,"%f\t%f\n",KM_PER_MILE*(path.distance[path.length-1]-path.distance[y]),total_loss); + + else + fprintf(fd,"%f\t%f\n",path.distance[path.length-1]-path.distance[y],total_loss); + + if (total_loss>maxloss) + maxloss=total_loss; + + if (total_loss=0.0) + { + fprintf(fd,"Site location: %.4f North / %.4f West",xmtr.lat, xmtr.lon); + fprintf(fd, " (%s N / ",dec2dms(xmtr.lat)); + } + + else + { + fprintf(fd,"Site location: %.4f South / %.4f West",-xmtr.lat, xmtr.lon); + fprintf(fd, " (%s S / ",dec2dms(xmtr.lat)); + } - case 2: - fprintf(fd2,"Continental Subtropical"); - break; + fprintf(fd, "%s W)\n",dec2dms(xmtr.lon)); + + if (metric) + { + fprintf(fd,"Ground elevation: %.2f meters AMSL\n",METERS_PER_FOOT*GetElevation(xmtr)); + fprintf(fd,"Antenna height: %.2f meters AGL / %.2f meters AMSL\n",METERS_PER_FOOT*xmtr.alt, METERS_PER_FOOT*(xmtr.alt+GetElevation(xmtr))); + } + + else + { + fprintf(fd,"Ground elevation: %.2f feet AMSL\n",GetElevation(xmtr)); + fprintf(fd,"Antenna height: %.2f feet AGL / %.2f feet AMSL\n",xmtr.alt, xmtr.alt+GetElevation(xmtr)); + } - case 3: - fprintf(fd2,"Maritime Subtropical"); - break; + terrain=haat(xmtr); - case 4: - fprintf(fd2,"Desert"); - break; + if (terrain>-4999.0) + { + if (metric) + fprintf(fd,"Antenna height above average terrain: %.2f meters\n\n",METERS_PER_FOOT*terrain); + else + fprintf(fd,"Antenna height above average terrain: %.2f feet\n\n",terrain); - case 5: - fprintf(fd2,"Continental Temperate"); - break; + /* Display the average terrain between 2 and 10 miles + from the transmitter site at azimuths of 0, 45, 90, + 135, 180, 225, 270, and 315 degrees. */ - case 6: - fprintf(fd2,"Martitime Temperate, Over Land"); - break; + for (azi=0; azi<=315; azi+=45) + { + fprintf(fd,"Average terrain at %3d degrees azimuth: ",azi); + terrain=AverageTerrain(xmtr,(double)azi,2.0,10.0); - case 7: - fprintf(fd2,"Maritime Temperate, Over Sea"); - break; + if (terrain>-4999.0) + { + if (metric) + fprintf(fd,"%.2f meters AMSL\n",METERS_PER_FOOT*terrain); + else + fprintf(fd,"%.2f feet AMSL\n",terrain); + } - default: - fprintf(fd2,"Unknown"); + else + fprintf(fd,"No terrain\n"); + } } - fprintf(fd2,")\nPolarization: %d (",LR.pol); + fprintf(fd,"\n---------------------------------------------------------------------------\n\n"); + fclose(fd); + fprintf(stdout,"\nSite analysis report written to: \"%s\"",report_name); +} - if (LR.pol==0) - fprintf(fd2,"Horizontal"); +void LoadTopoData(int max_lon, int min_lon, int max_lat, int min_lat) +{ + /* This function loads the SDF files required + to cover the limits of the region specified. */ - if (LR.pol==1) - fprintf(fd2,"Vertical"); + int x, y, width, ymin, ymax; - fprintf(fd2,")\nFraction of Situations: %.1lf%c\n",LR.conf*100.0,37); - fprintf(fd2,"Fraction of Time: %.1lf%c\n",LR.rel*100.0,37); + width=ReduceAngle(max_lon-min_lon); - fprintf(fd2,"\n-------------------------------------------------------------------------\n\n"); + if ((max_lon-min_lon)<=180.0) + { + for (y=0; y<=width; y++) + for (x=min_lat; x<=max_lat; x++) + { + ymin=(int)(min_lon+(double)y); - fprintf(fd2,"Analysis Results:\n\n"); + while (ymin<0) + ymin+=360; - ReadPath(source, destination); /* destination=RX, source=TX */ + while (ymin>=360) + ymin-=360; - elev_l[1]=0.04*METERS_PER_MILE; + ymax=ymin+1; - for (x=1; x=360) + ymax-=360; - fd=fopen("profile.gp","w"); + sprintf(string,"%d:%d:%d:%d",x, x+1, ymin, ymax); + LoadSDF(string); + } + } - for (x=2; x=360) + ymin-=360; + + ymax=ymin+1; + while (ymax<0) + ymax+=360; - fprintf(fd,"%f\t%f\n",path.distance[path.length-1]-path.distance[x],loss); - fprintf(fd2,"%7.2f\t\t%7.2f\t\t %d\t%s\n",path.distance[x],loss, errnum, strmode); - errflag|=errnum; - - if (loss>maxloss) - maxloss=loss; + while (ymax>=360) + ymax-=360; - if (loss255.0) + loss=255.0; - fprintf(fd,"set grid\n"); - fprintf(fd,"set yrange [%2.3f to %2.3f]\n", minloss, maxloss); - fprintf(fd,"set term %s\n",term); - fprintf(fd,"set title \"SPLAT! Loss Profile\"\n"); - fprintf(fd,"set xlabel \"Distance Between %s and %s (miles)\"\n",destination.name,source.name); - fprintf(fd,"set ylabel \"Longley-Rice Loss (dB)\"\n"); - fprintf(fd,"set output \"%s.%s\"\n",filename,ext); - fprintf(fd,"plot \"profile.gp\" title \"Longley-Rice Loss\" with lines\n"); + if (loss<=(double)maxdB) + PutSignal(latitude,longitude,((unsigned char)round(loss))); - fclose(fd); - - x=system("gnuplot splat.gp"); + fgets(string,78,fd); + sscanf(string,"%lf, %lf, %lf, %lf, %lf",&latitude, &longitude, &azimuth, &elevation, &loss); + } - if (x!=-1) - { - unlink("splat.gp"); - unlink("profile.gp"); - unlink("reference.gp"); + fclose(fd); fprintf(stdout," Done!\n"); fflush(stdout); } else - fprintf(stderr,"\n*** ERROR: Error occurred invoking gnuplot!\n"); + error=1; + + return error; } -void ObstructionReport(struct site xmtr, struct site rcvr, char report) +void WriteKML(struct site source, struct site destination) { - struct site result, result2, new_site; - double angle, haavt; - unsigned char block; - char report_name[80], string[255]; - int x; - FILE *fd; + int x, y; + char block, report_name[80]; + double distance, rx_alt, tx_alt, cos_xmtr_angle, + azimuth, cos_test_angle, test_alt; + FILE *fd=NULL; - sprintf(report_name,"%s-to-%s.txt",xmtr.name,rcvr.name); + ReadPath(source,destination); + + sprintf(report_name,"%s-to-%s.kml",source.name,destination.name); for (x=0; report_name[x]!=0; x++) if (report_name[x]==32 || report_name[x]==17 || report_name[x]==92 || report_name[x]==42 || report_name[x]==47) @@ -3306,206 +5844,274 @@ void ObstructionReport(struct site xmtr, struct site rcvr, char report) fd=fopen(report_name,"w"); - fprintf(fd,"\n\t\t--==[ SPLAT! v%s Obstruction Report ]==--\n\n",splat_version); - fprintf(fd,"Analysis of line-of-sight path conditions between %s and %s:\n",xmtr.name, rcvr.name); - fprintf(fd,"\n-------------------------------------------------------------------------\n\n"); - fprintf(fd,"Transmitter site: %s\n",xmtr.name); - fprintf(fd,"Site location: %.4f North / %.4f West",xmtr.lat, xmtr.lon); - fprintf(fd, " (%s N / ", dec2dms(xmtr.lat)); - fprintf(fd, "%s W)\n", dec2dms(xmtr.lon)); - fprintf(fd,"Ground elevation: %.2f feet AMSL\n",GetElevation(xmtr)); - fprintf(fd,"Antenna height: %.2f feet AGL / %.2f feet AMSL\n",xmtr.alt, xmtr.alt+GetElevation(xmtr)); - - haavt=haat(xmtr); - - if (haavt>-4999.0) - fprintf(fd,"Antenna height above average terrain: %.2f feet\n",haavt); - - fprintf(fd,"Distance to %s: %.2f miles.\n",rcvr.name,Distance(xmtr,rcvr)); - fprintf(fd,"Azimuth to %s: %.2f degrees.\n",rcvr.name,Azimuth(xmtr,rcvr)); - - angle=ElevationAngle(xmtr,rcvr); - - if (angle>=0.0) - fprintf(fd,"Angle of elevation between %s and %s: %+.4f degrees.\n",xmtr.name,rcvr.name,angle); - - if (angle<0.0) - fprintf(fd,"Angle of depression between %s and %s: %+.4f degrees.\n",xmtr.name,rcvr.name,angle); - - fprintf(fd,"\n-------------------------------------------------------------------------\n\n"); - - /* Receiver */ - - fprintf(fd,"Receiver site: %s\n",rcvr.name); - fprintf(fd,"Site location: %.4f North / %.4f West",rcvr.lat, rcvr.lon); - fprintf(fd, " (%s N / ", dec2dms(rcvr.lat)); - fprintf(fd, "%s W)\n", dec2dms(rcvr.lon)); - fprintf(fd,"Ground elevation: %.2f feet AMSL\n",GetElevation(rcvr)); - fprintf(fd,"Antenna height: %.2f feet AGL / %.2f feet AMSL\n",rcvr.alt, rcvr.alt+GetElevation(rcvr)); + fprintf(fd,"\n"); + fprintf(fd,"\n"); + fprintf(fd,"\n",splat_version); + fprintf(fd,"\n"); + fprintf(fd,"SPLAT! Path\n"); + fprintf(fd,"1\n"); + fprintf(fd,"Path Between %s and %s\n",source.name,destination.name); + + fprintf(fd,"\n"); + fprintf(fd," %s\n",source.name); + fprintf(fd," \n"); + fprintf(fd," Transmit Site\n"); + + if (source.lat>=0.0) + fprintf(fd,"
%s North
\n",dec2dms(source.lat)); + else + fprintf(fd,"
%s South
\n",dec2dms(source.lat)); - haavt=haat(rcvr); + fprintf(fd,"
%s West
\n",dec2dms(source.lon)); - if (haavt>-4999.0) - fprintf(fd,"Antenna height above average terrain: %.2f feet\n",haavt); + azimuth=Azimuth(source,destination); + distance=Distance(source,destination); - fprintf(fd,"Distance to %s: %.2f miles.\n",xmtr.name,Distance(xmtr,rcvr)); - fprintf(fd,"Azimuth to %s: %.2f degrees.\n",xmtr.name,Azimuth(rcvr,xmtr)); + if (metric) + fprintf(fd,"
%.2f km",distance*KM_PER_MILE); + else + fprintf(fd,"
%.2f miles",distance); + + fprintf(fd," to %s
\n
toward an azimuth of %.2f%c
\n",destination.name,azimuth,176); + + fprintf(fd,"
\n"); + fprintf(fd," 1\n"); + fprintf(fd," \n"); + fprintf(fd," \n"); + fprintf(fd," 1\n"); + fprintf(fd," relativeToGround\n"); + fprintf(fd," %f,%f,30\n",(source.lon<180.0?-source.lon:360.0-source.lon),source.lat); + fprintf(fd," \n"); + fprintf(fd,"
\n"); + + fprintf(fd,"\n"); + fprintf(fd," %s\n",destination.name); + fprintf(fd," \n"); + fprintf(fd," Receive Site\n"); + + if (destination.lat>=0.0) + fprintf(fd,"
%s North
\n",dec2dms(destination.lat)); + else + fprintf(fd,"
%s South
\n",dec2dms(destination.lat)); - angle=ElevationAngle(rcvr,xmtr); + fprintf(fd,"
%s West
\n",dec2dms(destination.lon)); - if (angle>=0.0) - fprintf(fd,"Angle of elevation between %s and %s: %+.4f degrees.\n",rcvr.name,xmtr.name,angle); - if (angle<0.0) - fprintf(fd,"Angle of depression between %s and %s: %+.4f degrees.\n",rcvr.name,xmtr.name,angle); + if (metric) + fprintf(fd,"
%.2f km",distance*KM_PER_MILE); + else + fprintf(fd,"
%.2f miles",distance); + + fprintf(fd," to %s
\n
toward an azimuth of %.2f%c
\n",source.name,Azimuth(destination,source),176); + + fprintf(fd,"
\n"); + fprintf(fd," 1\n"); + fprintf(fd," \n"); + fprintf(fd," \n"); + fprintf(fd," 1\n"); + fprintf(fd," relativeToGround\n"); + fprintf(fd," %f,%f,30\n",(destination.lon<180.0?-destination.lon:360.0-destination.lon),destination.lat); + fprintf(fd," \n"); + fprintf(fd,"
\n"); + + fprintf(fd,"\n"); + fprintf(fd,"Point-to-Point Path\n"); + fprintf(fd," 1\n"); + fprintf(fd," 0\n"); + fprintf(fd," \n"); + fprintf(fd," \n"); + fprintf(fd," 1\n"); + fprintf(fd," 1\n"); + fprintf(fd," relativeToGround\n"); + fprintf(fd," \n"); - fprintf(fd,"\n-------------------------------------------------------------------------\n\n"); + for (x=0; x\n"); + fprintf(fd," \n"); + fprintf(fd,"\n"); + + fprintf(fd,"\n"); + fprintf(fd,"Line-of-Sight Path\n"); + fprintf(fd," 1\n"); + fprintf(fd," 0\n"); + fprintf(fd," \n"); + fprintf(fd," \n"); + fprintf(fd," 1\n"); + fprintf(fd," 1\n"); + fprintf(fd," relativeToGround\n"); + fprintf(fd," \n"); + + /* Walk across the "path", indentifying obstructions along the way */ - if (report=='y') + for (y=0; y=0 && block==0; x--) { - if (result.lat!=result2.lat || result.lon!=result2.lon || result.alt!=result2.alt) - fprintf(fd,"\t%.4f N, %.4f W, %5.2f miles, %6.2f feet AMSL.\n",result.lat, result.lon, Distance(rcvr,result), result.alt); + distance=5280.0*(path.distance[y]-path.distance[x]); + test_alt=earthradius+path.elevation[x]; - result2=result; - new_site.alt+=1.0; + cos_test_angle=((rx_alt*rx_alt)+(distance*distance)-(test_alt*test_alt))/(2.0*rx_alt*distance); - /* Can you hear me now? :-) */ + /* Compare these two angles to determine if + an obstruction exists. Since we're comparing + the cosines of these angles rather than + the angles themselves, the following "if" + statement is reversed from what it would + be if the actual angles were compared. */ - result=los(xmtr,new_site); - block=result.name[0]; + if (cos_xmtr_angle>cos_test_angle) + block=1; } - if (new_site.alt!=rcvr.alt) - sprintf(string,"\nAntenna at %s must be raised to at least %.2f feet AGL\nto clear all obstructions detected by SPLAT!\n\n",rcvr.name, new_site.alt); + if (block) + fprintf(fd," %f,%f,-30\n",(path.lon[y]<180.0?-path.lon[y]:360.0-path.lon[y]),path.lat[y]); else - sprintf(string,"\nNo obstructions due to terrain were detected by SPLAT!\n\n"); + fprintf(fd," %f,%f,5\n",(path.lon[y]<180.0?-path.lon[y]:360.0-path.lon[y]),path.lat[y]); } - fprintf(fd,"%s",string); - - fclose(fd); - - /* Display LOS status to terminal */ - - fprintf(stdout,"%sObstruction report written to: \"%s\"\n",string,report_name); - fflush(stdout); -} - -void SiteReport(struct site xmtr) -{ - char report_name[80]; - double terrain; - int x, azi; - FILE *fd; - - sprintf(report_name,"%s-site_report.txt",xmtr.name); - - for (x=0; report_name[x]!=0; x++) - if (report_name[x]==32 || report_name[x]==17 || report_name[x]==92 || report_name[x]==42 || report_name[x]==47) - report_name[x]='_'; - - fd=fopen(report_name,"w"); - - fprintf(fd,"\n\t--==[ SPLAT! v%s Site Analysis Report For: %s ]==--\n\n",splat_version,xmtr.name); - - fprintf(fd,"---------------------------------------------------------------------------\n\n"); - fprintf(fd,"Site location: %.4f North / %.4f West",xmtr.lat, xmtr.lon); - fprintf(fd, " (%s N / ",dec2dms(xmtr.lat)); - fprintf(fd, "%s W)\n",dec2dms(xmtr.lon)); - fprintf(fd,"Ground elevation: %.2f feet AMSL\n",GetElevation(xmtr)); - fprintf(fd,"Antenna height: %.2f feet AGL / %.2f feet AMSL\n",xmtr.alt, xmtr.alt+GetElevation(xmtr)); - - terrain=haat(xmtr); + fprintf(fd," \n"); + fprintf(fd," \n"); + fprintf(fd,"\n"); - if (terrain>-4999.0) - { - fprintf(fd,"Antenna height above average terrain: %.2f feet\n\n",terrain); + fprintf(fd," \n"); + fprintf(fd," %f\n",(source.lon<180.0?-source.lon:360.0-source.lon)); + fprintf(fd," %f\n",source.lat); + fprintf(fd," 300.0\n"); + fprintf(fd," 45.0\n"); + fprintf(fd," %f\n",azimuth); + fprintf(fd," \n"); - /* Display the average terrain between 2 and 10 miles - from the transmitter site at azimuths of 0, 45, 90, - 135, 180, 225, 270, and 315 degrees. */ + fprintf(fd,"
\n"); + fprintf(fd,"
\n"); - for (azi=0; azi<=315; azi+=45) - { - fprintf(fd,"Average terrain at %3d degrees azimuth: ",azi); - terrain=AverageTerrain(xmtr,(double)azi,2.0,10.0); + fclose(fd); - if (terrain>-4999.0) - fprintf(fd,"%.2f feet AMSL\n",terrain); - else - fprintf(fd,"No terrain\n"); - } - } + fprintf(stdout, "\nKML file written to: \"%s\"",report_name); - fprintf(fd,"\n---------------------------------------------------------------------------\n\n"); - fclose(fd); - fprintf(stdout,"\nSite analysis report written to: \"%s\"\n",report_name); + fflush(stdout); } -int main(char argc, char *argv[]) +int main(int argc, char *argv[]) { + int x, y, z=0, min_lat, min_lon, max_lat, max_lon, + rxlat, rxlon, txlat, txlon, west_min, west_max, + north_min, north_max; - int x, y, z=0; - unsigned char rxlat, rxlon, txlat, txlon, min_lat, - min_lon, max_lat, max_lon, - coverage=0, LRmap=0, - ext[20], terrain_plot=0, - elevation_plot=0, height_plot=0, + unsigned char coverage=0, LRmap=0, terrain_plot=0, + elevation_plot=0, height_plot=0, map=0, nf=0, longley_plot=0, cities=0, bfs=0, txsites=0, - count, west_min, west_max, north_min, north_max, - report='y'; + norm=0, topomap=0, geo=0, kml=0, pt2pt_mode=0, + area_mode=0, max_txsites, ngs=0, nolospath=0, + nositereports=0; char mapfile[255], header[80], city_file[5][255], elevation_file[255], height_file[255], longley_file[255], terrain_file[255], - string[255], rxfile[255], - txfile[255], map=0, boundary_file[5][255]; + string[255], rxfile[255], *env=NULL, + txfile[255], boundary_file[5][255], + udt_file[255], rxsite=0, plo_filename[255], + pli_filename[255], ext[20]; double altitude=0.0, altitudeLR=0.0, tx_range=0.0, rx_range=0.0, deg_range=0.0, deg_limit, - deg_range_lon, er_mult; - struct site tx_site[4], rx_site; + deg_range_lon, er_mult, freq=0.0; + + struct site tx_site[32], rx_site; + FILE *fd; - sprintf(header,"\n --==[ SPLAT! v%s Terrain Analysis Software (c) 1997-2004 KD2BD ]==--\n\n", splat_version); if (argc==1) { - fprintf(stdout, "%sAvailable Options...\n\n\t-t txsite(s).qth (max of 4)\n\t-r rxsite.qth\n",header); - fprintf(stdout,"\t-c plot coverage area(s) of TX(s) based on an RX antenna at X feet AGL\n"); - fprintf(stdout,"\t-L plot path loss map of TX based on an RX antenna at X feet AGL\n"); - fprintf(stdout,"\t-s filename(s) of city/site file(s) to import (max of 5)\n"); - fprintf(stdout,"\t-b filename(s) of cartographic boundary file(s) to import (max of 5)\n"); - fprintf(stdout,"\t-p filename of terrain profile graph to plot\n"); - fprintf(stdout,"\t-e filename of terrain elevation graph to plot\n"); - fprintf(stdout,"\t-h filename of terrain height graph to plot\n"); - fprintf(stdout,"\t-l filename of Longley-Rice graph to plot\n"); - fprintf(stdout,"\t-o filename of topographic map to generate (.ppm)\n"); - fprintf(stdout,"\t-d sdf file directory path (overrides path in ~/.splat_path file)\n"); - fprintf(stdout,"\t-n no analysis, brief report\n\t-N no analysis, no report\n"); - fprintf(stdout,"\t-m earth radius multiplier\n"); - fprintf(stdout,"\t-R modify default range for -c or -L (miles)\n\n"); - + fprintf(stdout,"\n\t\t --==[ SPLAT! v%s Available Options... ]==--\n\n",splat_version); + fprintf(stdout," -t txsite(s).qth (max of 4 with -c, max of 30 with -L)\n"); + fprintf(stdout," -r rxsite.qth\n"); + fprintf(stdout," -c plot coverage of TX(s) with an RX antenna at X feet/meters AGL\n"); + fprintf(stdout," -L plot path loss map of TX based on an RX at X feet/meters AGL\n"); + fprintf(stdout," -s filename(s) of city/site file(s) to import (5 max)\n"); + fprintf(stdout," -b filename(s) of cartographic boundary file(s) to import (5 max)\n"); + fprintf(stdout," -p filename of terrain profile graph to plot\n"); + fprintf(stdout," -e filename of terrain elevation graph to plot\n"); + fprintf(stdout," -h filename of terrain height graph to plot\n"); + fprintf(stdout," -H filename of normalized terrain height graph to plot\n"); + fprintf(stdout," -l filename of Longley-Rice graph to plot\n"); + fprintf(stdout," -o filename of topographic map to generate (.ppm)\n"); + fprintf(stdout," -u filename of user-defined terrain file to import\n"); + fprintf(stdout," -d sdf file directory path (overrides path in ~/.splat_path file)\n"); + fprintf(stdout," -m earth radius multiplier\n"); + fprintf(stdout," -n do not plot LOS paths in .ppm maps\n"); + fprintf(stdout," -N do not produce unnecessary site or obstruction reports\n"); + fprintf(stdout," -f frequency for Fresnel zone calculation (MHz)\n"); + fprintf(stdout," -R modify default range for -c or -L (miles/kilometers)\n"); + fprintf(stdout," -db maximum loss contour to display on path loss maps (80-230 dB)\n"); + fprintf(stdout," -nf do not plot Fresnel zones in height plots\n"); + fprintf(stdout," -fz Fresnel zone clearance percentage (default = 60)\n"); + fprintf(stdout," -ngs display greyscale topography as white in .ppm files\n"); + fprintf(stdout," -erp override ERP in .lrp file (Watts)\n"); + fprintf(stdout," -pli filename of path-loss input file\n"); + fprintf(stdout," -plo filename of path-loss output file\n"); + fprintf(stdout," -udt filename of user defined terrain input file\n"); + fprintf(stdout," -kml generate Google Earth (.kml) compatible output\n"); + fprintf(stdout," -geo generate an Xastir .geo georeference file (with .ppm output)\n"); + fprintf(stdout," -metric employ metric rather than imperial units for all user I/O\n\n"); + fprintf(stdout,"If that flew by too fast, consider piping the output through 'less':\n"); + fprintf(stdout,"\n\tsplat | less\n\n"); fprintf(stdout,"Type 'man splat', or see the documentation for more details.\n\n"); fflush(stdout); + return 1; } y=argc-1; + kml=0; + geo=0; + metric=0; rxfile[0]=0; txfile[0]=0; string[0]=0; @@ -3513,19 +6119,34 @@ int main(char argc, char *argv[]) elevation_file[0]=0; terrain_file[0]=0; sdf_path[0]=0; + udt_file[0]=0; path.length=0; - rx_site.lat=0.0; - rx_site.lon=0.0; + max_txsites=30; + LR.frq_mhz=0.0; + fzone_clearance=0.6; + rx_site.lat=91.0; + rx_site.lon=361.0; + longley_file[0]=0; + plo_filename[0]=0; + pli_filename[0]=0; earthradius=EARTHRADIUS; - for (x=0; x100.0) + fzone_clearance=60.0; + + fzone_clearance/=100.0; + } + } + if (strcmp(argv[x],"-o")==0) { z=x+1; @@ -3575,6 +6211,14 @@ int main(char argc, char *argv[]) map=1; } + if (strcmp(argv[x],"-u")==0) + { + z=x+1; + + if (z<=y && argv[z][0] && argv[z][0]!='-') + strncpy(udt_file,argv[z],253); + } + if (strcmp(argv[x],"-c")==0) { z=x+1; @@ -3582,10 +6226,31 @@ int main(char argc, char *argv[]) if (z<=y && argv[z][0] && argv[z][0]!='-') { sscanf(argv[z],"%lf",&altitude); + map=1; coverage=1; + area_mode=1; + max_txsites=4; } } + if (strcmp(argv[x],"-db")==0 || strcmp(argv[x],"-dB")==0) + { + z=x+1; + + if (z<=y && argv[z][0] && argv[z][0]!='-') + { + sscanf(argv[z],"%d",&maxdB); + + maxdB=abs(maxdB); + + if (maxdB<80) + maxdB=80; + + if (maxdB>230) + maxdB=230; + } + } + if (strcmp(argv[x],"-p")==0) { z=x+1; @@ -3594,6 +6259,7 @@ int main(char argc, char *argv[]) { strncpy(terrain_file,argv[z],253); terrain_plot=1; + pt2pt_mode=1; } } @@ -3605,10 +6271,11 @@ int main(char argc, char *argv[]) { strncpy(elevation_file,argv[z],253); elevation_plot=1; + pt2pt_mode=1; } } - if (strcmp(argv[x],"-h")==0) + if (strcmp(argv[x],"-h")==0 || strcmp(argv[x],"-H")==0) { z=x+1; @@ -3616,25 +6283,37 @@ int main(char argc, char *argv[]) { strncpy(height_file,argv[z],253); height_plot=1; + pt2pt_mode=1; } + + if (strcmp(argv[x],"-H")==0) + norm=1; + else + norm=0; } + if (strcmp(argv[x],"-metric")==0) + metric=1; + + if (strcmp(argv[x],"-geo")==0) + geo=1; + + if (strcmp(argv[x],"-kml")==0) + kml=1; + + if (strcmp(argv[x],"-nf")==0) + nf=1; + + if (strcmp(argv[x],"-ngs")==0) + ngs=1; + if (strcmp(argv[x],"-n")==0) - { - if (z<=y && argv[z][0] && argv[z][0]!='-') - { - report='n'; - map=1; - } - } + nolospath=1; if (strcmp(argv[x],"-N")==0) { - if (z<=y && argv[z][0] && argv[z][0]!='-'); - { - report='N'; - map=1; - } + nolospath=1; + nositereports=1; } if (strcmp(argv[x],"-d")==0) @@ -3651,13 +6330,14 @@ int main(char argc, char *argv[]) z=x+1; - while (z<=y && argv[z][0] && argv[z][0]!='-' && txsites<4) + while (z<=y && argv[z][0] && argv[z][0]!='-' && txsites<30) { strncpy(txfile,argv[z],253); tx_site[txsites]=LoadQTH(txfile); txsites++; z++; } + z--; } @@ -3668,14 +6348,12 @@ int main(char argc, char *argv[]) if (z<=y && argv[z][0] && argv[z][0]!='-') { sscanf(argv[z],"%lf",&altitudeLR); + map=1; + LRmap=1; + area_mode=1; if (coverage) fprintf(stdout,"c and L are exclusive options, ignoring L.\n"); - else - { - LRmap=1; - ReadLRParm(txfile); - } } } @@ -3687,8 +6365,7 @@ int main(char argc, char *argv[]) { strncpy(longley_file,argv[z],253); longley_plot=1; - /* Doing this twice is harmless */ - ReadLRParm(txfile); + pt2pt_mode=1; } } @@ -3702,6 +6379,8 @@ int main(char argc, char *argv[]) { strncpy(rxfile,argv[z],253); rx_site=LoadQTH(rxfile); + rxsite=1; + pt2pt_mode=1; } } @@ -3717,6 +6396,7 @@ int main(char argc, char *argv[]) cities++; z++; } + z--; } @@ -3732,8 +6412,54 @@ int main(char argc, char *argv[]) bfs++; z++; } + z--; } + + if (strcmp(argv[x],"-f")==0) + { + z=x+1; + + if (z<=y && argv[z][0] && argv[z][0]!='-') + { + sscanf(argv[z],"%lf",&freq); + + if (freq<20) + freq=20; + + if (freq>20e3) + freq=20e3; + } + } + + if (strcmp(argv[x],"-erp")==0) + { + z=x+1; + + if (z<=y && argv[z][0] && argv[z][0]!='-') + { + sscanf(argv[z],"%lf",&forced_erp); + + if (forced_erp<0.0) + forced_erp=-1.0; + } + } + + if (strcmp(argv[x],"-plo")==0) + { + z=x+1; + + if (z<=y && argv[z][0] && argv[z][0]!='-') + strncpy(plo_filename,argv[z],253); + } + + if (strcmp(argv[x],"-pli")==0) + { + z=x+1; + + if (z<=y && argv[z][0] && argv[z][0]!='-') + strncpy(pli_filename,argv[z],253); + } } /* Perform some error checking on the arguments @@ -3749,7 +6475,7 @@ int main(char argc, char *argv[]) for (x=0, y=0; x feet */ + max_range/=KM_PER_MILE; /* kilometers --> miles */ + altitude/=METERS_PER_FOOT; /* meters --> feet */ } - /* No errors were detected. Whew! :-) */ - /* If no SDF path was specified on the command line (-d), check for a path specified in the $HOME/.splat_path file. If the file is not found, then sdf_path[] remains NULL, and the @@ -3778,7 +6524,8 @@ int main(char argc, char *argv[]) if (sdf_path[0]==0) { - sprintf(string,"%s/.splat_path",getenv("HOME")); + env=getenv("HOME"); + sprintf(string,"%s/.splat_path",env); fd=fopen(string,"r"); if (fd!=NULL) @@ -3812,90 +6559,96 @@ int main(char argc, char *argv[]) fprintf(stdout,"%s",header); fflush(stdout); - x=0; - y=0; + if (pli_filename[0]) + { + y=LoadPLI(pli_filename); - min_lat=0; - max_lat=0; - min_lon=0; - max_lon=0; + for (x=0; xmax_lat) - max_lat=rxlat; - - if (rxlon>max_lon) - max_lon=rxlon; - - for (y=0, z=0; zmax_lat) max_lat=txlat; - if (txlon>max_lon) + if (LonDiff(txlon,min_lon)<0.0) + min_lon=txlon; + + if (LonDiff(txlon,max_lon)>0.0) max_lon=txlon; } - if (min_lat!=0 && min_lon!=0 && max_lat!=0 && max_lon!=0) + if (rxsite) { - for (y=min_lon; y<=max_lon; y++) - for (x=min_lat; x<=max_lat; x++) - { - sprintf(string,"%u:%u:%u:%u",x, x+1, y, y+1); - LoadSDF(string); - } + rxlat=(int)floor(rx_site.lat); + rxlon=(int)floor(rx_site.lon); + + if (rxlatmax_lat) + max_lat=rxlat; + + if (LonDiff(rxlon,min_lon)<0.0) + min_lon=rxlon; + + if (LonDiff(rxlon,max_lon)>0.0) + max_lon=rxlon; } - if (coverage) + + /* Load the required SDF files */ + + LoadTopoData(max_lon, min_lon, max_lat, min_lat); + + if (area_mode || topomap) { - for (z=0; zdeg_limit) deg_range_lon=deg_limit; - north_min=(unsigned char)floor(tx_site[z].lat-deg_range); - north_max=(unsigned char)floor(tx_site[z].lat+deg_range); - west_min=(unsigned char)floor(tx_site[z].lon-deg_range_lon); - west_max=(unsigned char)floor(tx_site[z].lon+deg_range_lon); - - if (min_lat==0) - min_lat=north_min; - - else if (north_minmax_lat) - max_lat=north_max; - - if (west_max>max_lon) - max_lon=west_max; - } - - if (min_lat!=0 && min_lon!=0 && max_lat!=0 && max_lon!=0) - { - for (y=min_lon; y<=max_lon; y++) - for (x=min_lat; x<=max_lat; x++) - { - sprintf(string,"%u:%u:%u:%u",x, x+1, y, y+1); - LoadSDF(string); - } - } - } - - if (LRmap) - { - /* "Ball park" estimates used to load any additional - SDF files required to conduct this analysis. */ - - tx_range=sqrt(1.5*(tx_site[0].alt+GetElevation(tx_site[0]))); - rx_range=sqrt(1.5*altitudeLR); - - /** - tx_range=sqrt(5.0*tx_site[0].alt); - rx_range=sqrt(5.0*altitudeLR); - **/ - - /* deg_range determines the maximum - amount of topo data we read */ - - deg_range=(tx_range+rx_range)/69.0; - - /* max_range sets the maximum size of the - analysis. A small, non-zero amount can - be used to shrink the size of the analysis - and limit the amount of topo data read by - SPLAT! A very large number will only increase - the width of the analysis, not the size of - the map. */ + north_min=(int)floor(tx_site[z].lat-deg_range); + north_max=(int)floor(tx_site[z].lat+deg_range); - if (max_range==0.0) - max_range=tx_range+rx_range; + west_min=(int)floor(tx_site[z].lon-deg_range_lon); - if (max_range<(tx_range+rx_range)) - deg_range=max_range/69.0; + while (west_min<0) + west_min+=360; - /* Prevent the demand for a really wide coverage - from allocating more slots than are available - in memory. */ + while (west_min>=360) + west_min-=360; - switch (MAXSLOTS) - { - case 2: deg_limit=0.25; - break; - - case 4: deg_limit=0.5; - break; - - case 9: deg_limit=1.0; - break; - - case 16: deg_limit=2.0; - break; - - case 25: deg_limit=3.0; - } - - if (tx_site[0].lat<70.0) - deg_range_lon=deg_range/cos(deg2rad*tx_site[0].lat); - else - deg_range_lon=deg_range/cos(deg2rad*70.0); + west_max=(int)floor(tx_site[z].lon+deg_range_lon); - /* Correct for squares in degrees not being square in miles */ + while (west_max<0) + west_max+=360; - if (deg_range>deg_limit) - deg_range=deg_limit; + while (west_max>=360) + west_max-=360; - if (deg_range_lon>deg_limit) - deg_range_lon=deg_limit; - - north_min=(unsigned char)floor(tx_site[0].lat-deg_range); - north_max=(unsigned char)floor(tx_site[0].lat+deg_range); - west_min=(unsigned char)floor(tx_site[0].lon-deg_range_lon); - west_max=(unsigned char)floor(tx_site[0].lon+deg_range_lon); - - if (min_lat==0) - min_lat=north_min; - - else if (north_minmax_lat) - max_lat=north_max; + if (north_max>max_lat) + max_lat=north_max; - if (west_max>max_lon) - max_lon=west_max; + if (LonDiff(west_min,min_lon)<0.0) + min_lon=west_min; - if (min_lat!=0 && min_lon!=0 && max_lat!=0 && max_lon!=0) - { - for (y=min_lon; y<=max_lon; y++) - for (x=min_lat; x<=max_lat; x++) - { - sprintf(string,"%u:%u:%u:%u",x, x+1, y, y+1); - LoadSDF(string); - } + if (LonDiff(west_max,max_lon)>0.0) + max_lon=west_max; } - } - - if (mapfile[0]) - map=1; - - if (coverage) - { - for (x=0; x1) + if (terrain_plot) { for (x=0; terrain_file[x]!='.' && terrain_file[x]!=0 && x<80; x++); @@ -4188,21 +6792,9 @@ int main(char argc, char *argv[]) ext[0]=0; /* No extension */ terrain_file[x]=0; } - - for (count=0; count1) + if (elevation_plot) { for (x=0; elevation_file[x]!='.' && elevation_file[x]!=0 && x<80; x++); @@ -4221,21 +6813,9 @@ int main(char argc, char *argv[]) ext[0]=0; /* No extension */ elevation_file[x]=0; } - - for (count=0; count1) + if (height_plot) { for (x=0; height_file[x]!='.' && height_file[x]!=0 && x<80; x++); @@ -4254,50 +6834,148 @@ int main(char argc, char *argv[]) ext[0]=0; /* No extension */ height_file[x]=0; } + } + + for (x=0; x1) + sprintf(string,"%s-%c%s%c",longley_file,'1'+x,ext,0); + else + sprintf(string,"%s%s%c",longley_file,ext,0); - for (count=0; count1) + sprintf(string,"%s-%c%s%c",terrain_file,'1'+x,ext,0); + else + sprintf(string,"%s%s%c",terrain_file,ext,0); - if (longley_plot) - { - if (txsites>1) - { - for (x=0; longley_file[x]!='.' && longley_file[x]!=0 && x<80; x++); + GraphTerrain(tx_site[x],rx_site,string); + } - if (longley_file[x]=='.') /* extension */ + if (elevation_plot) { - ext[0]='.'; - for (y=1, z=x, x++; longley_file[x]!=0 && x<253 && y<14; x++, y++) - ext[y]=longley_file[x]; + if (txsites>1) + sprintf(string,"%s-%c%s%c",elevation_file,'1'+x,ext,0); + else + sprintf(string,"%s%s%c",elevation_file,ext,0); - ext[y]=0; - longley_file[z]=0; + GraphElevation(tx_site[x],rx_site,string); } - else + if (height_plot) { - ext[0]=0; /* No extension */ - longley_file[x]=0; + if (freq==0.0 && nf==0) + freq=LR.frq_mhz; + + if (txsites>1) + sprintf(string,"%s-%c%s%c",height_file,'1'+x,ext,0); + else + sprintf(string,"%s%s%c",height_file,ext,0); + + GraphHeight(tx_site[x],rx_site,string,freq,norm); } + } + } + + if (area_mode && topomap==0) + { + for (x=0; x