# # Copyright 2002,2005 Free Software Foundation, Inc. # # This file is part of GNU Radio # # GNU Radio is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3, or (at your option) # any later version. # # GNU Radio is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with GNU Radio; see the file COPYING. If not, write to # the Free Software Foundation, Inc., 51 Franklin Street, # Boston, MA 02110-1301, USA. # # input and taps are guarenteed to be 16 byte aligned. # n_2_complex_blocks is != 0 # # # fcomplex_dotprod_generic (const float *input, # const float *taps, unsigned n_2_complex_blocks, float *result) # { # float sum0 = 0; # float sum1 = 0; # float sum2 = 0; # float sum3 = 0; # # do { # # sum0 += input[0] * taps[0]; # sum1 += input[0] * taps[1]; # sum2 += input[1] * taps[2]; # sum3 += input[1] * taps[3]; # # input += 2; # taps += 4; # # } while (--n_2_complex_blocks != 0); # # # result[0] = sum0 + sum2; # result[1] = sum1 + sum3; # } # # TODO: prefetch and better scheduling #include "assembly.h" .file "fcomplex_dotprod_sse64.S" .version "01.01" .text .p2align 4 .globl GLOB_SYMB(fcomplex_dotprod_sse) DEF_FUNC_HEAD(fcomplex_dotprod_sse) GLOB_SYMB(fcomplex_dotprod_sse): # intput: rdi, taps: rsi, n_2_ccomplex_blocks: rdx, result: rcx mov %rdx, %rax # xmm0 xmm1 xmm2 xmm3 are used to hold taps and the result of mults # xmm4 xmm5 xmm6 xmm7 are used to hold the accumulated results xorps %xmm4, %xmm4 # zero two accumulators xorps %xmm5, %xmm5 # xmm5 holds zero for use below # first handle any non-zero remainder of (n_2_complex_blocks % 4) and $0x3, %rax jmp .L1_test .p2align 4 .loop1: movlps 0(%rdi), %xmm0 shufps $0x50, %xmm0, %xmm0 # b01010000 mulps (%rsi), %xmm0 add $0x10, %rsi add $8, %rdi addps %xmm0, %xmm4 .L1_test: dec %rax jge .loop1 # set up for primary loop which is unrolled 4 times movaps %xmm5, %xmm6 # zero remaining accumulators movaps %xmm5, %xmm7 shr $2, %rdx # n_2_complex_blocks / 4 je .cleanup # if zero, take short path # finish setup and loop priming movlps 0(%rdi), %xmm0 movaps %xmm5, %xmm2 movaps %xmm5, %xmm3 movlps 8(%rdi), %xmm1 shufps $0x50, %xmm0, %xmm0 shufps $0x50, %xmm1, %xmm1 # we know rdx is not zero, we checked above, # hence enter loop at top .p2align 4 .loop2: addps %xmm2, %xmm6 movlps 0x10(%rdi), %xmm2 addps %xmm3, %xmm7 mulps (%rsi), %xmm0 movlps 0x18(%rdi), %xmm3 shufps $0x50, %xmm2, %xmm2 mulps 0x10(%rsi), %xmm1 shufps $0x50, %xmm3, %xmm3 addps %xmm0, %xmm4 movlps 0x20(%rdi), %xmm0 addps %xmm1, %xmm5 mulps 0x20(%rsi), %xmm2 movlps 0x28(%rdi), %xmm1 shufps $0x50, %xmm0, %xmm0 mulps 0x30(%rsi), %xmm3 shufps $0x50, %xmm1, %xmm1 add $0x40, %rsi add $0x20, %rdi dec %rdx jne .loop2 # OK, now we've done with all the multiplies, but # we still need to handle the unaccumulated # products in xmm2 and xmm3 addps %xmm2, %xmm6 addps %xmm3, %xmm7 # now we want to add all accumulators into xmm4 addps %xmm5, %xmm4 addps %xmm6, %xmm7 addps %xmm7, %xmm4 # At this point, xmm4 contains 2x2 partial sums. We need # to compute a "horizontal complex add" across xmm4. .cleanup: # xmm4 = r1 i2 r3 i4 movhlps %xmm4, %xmm0 # xmm0 = ?? ?? r1 r2 addps %xmm4, %xmm0 # xmm0 = ?? ?? r1+r3 i2+i4 movlps %xmm0, (%rcx) # store low 2x32 bits (complex) to memory retq FUNC_TAIL(fcomplex_dotprod_sse) .ident "Hand coded x86_64 SSE assembly"